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Chapter 3:  The Upper Paleolithic 

Proofs of Formal Propositions 



 2 

Proof of Proposition 3.1 (learning by doing). 

Choose any resource r.  Let Z º X(nrt/Nt)Nt+1 º Xnrtrt be the number of copies of 

string krt, where X is the number of observations per child, nrt/Nt is the fraction of these 

observations that pertain to resource r, and Nt+1 is the number of children who survive to 

become adults in period t+1.  Let z = 1 . . Z index the individual copies krz of krt. 

  The number of digits in krt that match kr* is qrt Î {0, 1 . . Q} and the number of 

digits in krz that match kr* is qrz Î {0, 1 . . Q}.  The random variables qrz are iid 

conditional on krt.  Fix the string krt and define the probabilities   

pq(p) º Pr(qrz = q êkrt; p)   for all q = 0, 1 . . Q and z = 1 . . Z. 

Then define 

 qq(p) º Pr(qrt+1 = q êkrt; p) = Pr(max{qr1 . . qrZ} = q êkrt; p) 

         = Pr(qrz ≤ q for z = 1 . . Z êkrt; p) – Pr(qrz ≤ q-1 for z = 1 . . Z êkrt; p) 

         = [p0(p) + . . + pq(p)]Z - [p0(p) + . . + pq-1(p)]Z 

where p0(p) + . . + pq-1(p) º 0 for q = 0.  

 We want to compute each qq(p) when X ® ¥ and p ® 0 such that Xp º l > 0 is 

constant.  From the definition of Z we have Z(p) = lrtnrt/p.  In what follows we drop the r 

subscript and the t superscripts in this expression.  Next define 

qq* º  limp®0 qq(p) 

       =  limp®0 [p0(p) + . . + pq(p)]Z(p) – limp®0 [p0(p) + . . + pq-1(p)]Z(p) 

       = {limp®0 exp[(1/p)ln(p0(p) + . . + pq(p))]}λnρ  

– {limp®0 exp[(1/p)ln(p0(p) + . . + pq-1(p))]}λnρ 



 3 

We have limp®0 pq(p) = 1 for q = qrt and limp®0 pq(p) = 0 for q ≠ qrt because at least one 

mutation must occur whenever the number of correct digits differs from qrt.  This implies 

that for each expression of the form limp®0 exp[(1/p)ln(p0(p) + . . + pq(p))], there are two 

possible cases: 

(a)  If q < qrt then limp®0 exp[(1/p)ln(p0(p) + . . + pq(p))] = e-∞ = 0 and hence qq* = 0.  

(b)  If q ≥ qrt then limp®0 (p0(p) + . . + pq(p)) = 1 and hence limp®0 exp[(1/p)ln(p0(p) + 

. . pq(p))] = limp®0  exp[p0¢(p) + . . + pq¢(p)]. 

 Now consider the derivatives pq¢(p) in case (b) above.  The probabilities pq(p) are 

polynomials in p, and all outcomes involving two or more mutations correspond to terms 

that are quadratic or higher.  After taking derivatives, all such terms vanish in the limit.  

Thus, we can confine attention to outcomes that involve either no mutations or just one 

mutation.  This implies that only q = qrt - 1, q = qrt, and q = qrt + 1 are relevant.   

(i) q = qrt - 1.  This outcome can be obtained in qrt ways by having one mutation at a 

locus that is correct in period t and no mutations elsewhere, which has probability 

qrtp(1-p)Q-1.  All other ways to obtain this result involve three or more mutations.  

This gives limp®0 pq¢(p) = qrt so limp®0 exp[p0¢(p) + . . + pq¢(p)] = exp(qrt). 

(ii) q = qrt.  This outcome can be obtained in one way with no mutations, which has 

probability (1-p)Q.  All other ways to obtain the same result involve two or more 

mutations.  This gives limp®0 pq¢(p) = -Q so limp®0 exp[p0¢(p) + . . + pq¢(p)] = 

exp[-(Q-qrt)]. 

(iii) q = qrt + 1.  This outcome can be obtained in Q-qrt ways by having one mutation 

at an incorrect locus and no mutations elsewhere with probability (Q-qrt)p(1-p)Q-1.  
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All other ways to obtain the same result involve three or more mutations.  This 

gives limp®0  pq¢(p) = Q-qrt and thus limp®0 exp[p0¢(p) + . . + pq¢(p)] = e0 = 1. 

Recall from (a) above that qq* = 0 when q < qrt.  To solve for qq* when q = qrt we first 

observe that the second limit in the last line for qq* is zero due to (a).  Substituting from 

(b) and (ii) in the first limit in the last line for qq* gives qq* = exp[-lnrtrt(Q-qrt)]. 

 To solve for qq* when q = qrt + 1 we observe that (b) applies to both limits in the 

last line for qq*.  Substituting from (b) gives qq* = 1- exp[-lnrtrt(Q-qrt)]. 

 Finally, we have qq* = 0 when q ≥ qrt + 2 because (b) applies to both limits in the 

last line for qq* and both of these limits equal unity.  The latter result follows from (iii) 

and the fact that any outcome with q ≥ qrt + 2 requires two or more mutations. 

 By construction all of the qq* are conditional on krt.  However, the structure of the 

proof shows that the only relevant property of krt is the number of correct digits qrt.  Thus 

we can write the transition probabilities for qrt and qrt+1 as in Proposition 3.1.   

 The limiting transition probabilities for strings, limp®0 Pr(krt+1 = k ê krt; p), follow 

from the preceding results.  If k has fewer correct digits than qrt or more than qrt + 1, it 

has probability zero in the limit.  The only way to have qrt+1 = qrt in the limit is by having 

krt+1 = krt so this has probability exp[-lnrtrt(Q-qt)].  There are Q-qrt ways to obtain qrt+1 = 

qrt + 1 by a single mutation that changes one incorrect digit to a correct one.  Each of 

these strings krt+1 has probability {1- exp[-lnrtrt(Q-qrt)]}/(Q-qrt).  This ends the proof.
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Proof of Proposition 3.2 (short-run equilibrium). 

 Uniqueness follows from strict concavity of the objective function and continuity 

follows from the theorem of the maximum.  Note that due to the strict concavity, the first 

order conditions are sufficient for a solution. 

(a) Let n¢ be optimal for (A, N¢) and let n¢¢ be optimal for (A, N¢¢).  Suppose that nr¢¢ ≤ 

nr¢.  The first order conditions for (3.2) with parameters (A, N¢¢) imply that all s 

with ns¢¢ > 0 have Asfs¢(ns¢¢) ≥ Arfr¢(nr¢¢).  The fact that nr¢¢ ≤ nr¢ gives Arfr¢(nr¢¢) ≥ 

Arfr¢(nr¢).  Finally, the first order conditions for (3.2) with parameters (A, N¢) and 

nr¢ > 0 give Arfr¢(nr¢) ≥ Asfs¢(ns¢) for all s = 1 . . R.  This series of inequalities gives 

Asfs¢(ns¢¢) ≥ Asfs¢(ns¢) for all s with ns¢¢ > 0 and thus implies ns¢ ≥ ns¢¢ for all s such 

that ns¢¢ > 0.  Clearly ns¢ ≥ ns¢¢ also holds for all s such that ns¢¢ = 0.   Summing 

over resources gives N¢ ≥ N¢¢, contradicting the assumption N¢ < N¢¢.  This shows 

that nr¢¢ > nr¢. 

(b) Let n¢ be optimal for (A¢, N) and let n¢¢ be optimal for (A¢¢, N).  Suppose nr¢¢ ≤ nr¢.  

For all v ≠ r such that nv¢¢ > 0 we have Av¢¢fv¢(nv¢¢) ≥ Ar¢¢fr¢(nr¢¢).  Furthermore, 

Ar¢¢fr¢(nr¢¢) > Ar¢fr¢(nr¢¢) ≥ Ar¢fr¢(nr¢) ≥ Av¢fv¢(nv¢) for all v = 1 . . R.  The first 

inequality follows from Ar¢¢ > Ar¢, the second from nr¢¢ ≤ nr¢, and the last from nr¢ 

> 0.  The preceding series of inequalities and Av¢¢ = Av¢ for v ≠ r shows that 

Av¢fv¢(nv¢¢) > Av¢fv¢(nv¢) for all v ≠ r such that nv¢¢ > 0 and hence nv¢¢ < nv¢ for all v 

≠ r such that nv¢¢ > 0.  There must be at least one such v ≠ r since otherwise nr¢¢ = 

N > nr¢ due to ns¢ > 0, but we have supposed nr¢¢ ≤ nr¢.  Clearly all v ≠ r with nv¢¢ = 

0 have nv¢¢ ≤ nv¢.  Summing over all resources gives N¢¢ < N¢ because there is at 
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least one v ≠ r with nv¢¢ < nv¢.  This contradicts the fact that N is constant.  

Therefore nr¢¢ > nr¢.  Next suppose ns¢¢ ≥ ns¢.  Consider v ≠ s and v ≠ r.  For all 

such v, Av¢¢fv¢(nv¢¢) ≤ As¢¢fr¢(ns¢¢) ≤ As¢¢fs¢(ns¢) = As¢fs¢(ns¢).  Moreover, if nv¢ > 0 we 

have As¢fs¢(ns¢)  = Av¢fv¢(nv¢).  This and Av¢¢ = Av¢ implies that for any v ≠ s and v 

≠ r with nv¢ > 0, it must be true that nv¢¢ ≥ nv¢.  Clearly the same inequality holds 

when nv¢ = 0.  Since nr¢¢ > nr¢ and we have supposed ns¢¢ ≥ ns¢, summing over 

resources gives N¢¢ > N¢.  This contradicts the fact that N is constant.  Therefore 

ns¢¢ < ns¢. 

(c) Fix A > 0.  Choose any N¢ ≠ N¢¢ and µ Î (0, 1).  Let n¢ be optimal for (A, N¢) and 

let n¢¢ be optimal for (A, N¢¢).  Define nμ = µn¢ + (1-µ)n¢¢ ≥ 0.  This is a feasible 

allocation for the total population Nμ = µN¢ + (1-µ)N¢¢.  It follows that H(A, Nμ) ≥ 

å Arfr(nrμ) = å Arfr[µnr¢ + (1-µ)nr¢¢] > å Ar[µfr(nr¢) + (1-µ)fr(nr¢¢)] = µH(A, N¢) + 

(1-µ)H(A, N¢¢).  The strict inequality occurs because due to the strict concavity of 

fr we have fr[µnr¢ + (1-µ)nr¢¢] > µfr(nr¢) + (1-µ)fr(nr¢¢) whenever nr¢ ≠ nr¢¢, and the 

latter inequality must hold for at least one r because N¢ ≠ N¢¢.  This establishes the 

strict concavity of H(A, N) in N.  Due to H(A, 0) = 0, strict concavity of H gives 

H(A, µN) > µH(A, N) for all N > 0 and µ Î (0, 1).  This implies H(A, µN)/µN > 

H(A, N)/N for all N > 0 and µ Î (0, 1).  Thus, y(A, N) º H(A, N)/N is decreasing 

in N. 

(d) Fix A > 0 and consider the (unique) optimal allocation n(A, N).  We first show 

that lim N®¥ ns(A, N) = ¥ must hold for some s.  Suppose instead that for every r 

there is a finite upper bound nr such that nr(A, N) ≤ nr for all N.  Then for any N > 
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å nr we have å nr(A, N) < N, which contradicts optimality.  Thus, there is some s 

such that lim N®¥ ns(A, N) = ¥.  From the assumption that fr¢(nr) ® 0 as nr ® ¥ 

for r = 1 . . R we obtain lim N®¥ Asfs¢[ns(A, N)] = 0.  Next, define m(A, N) = max 

{Arfr¢[nr(A, N)]}.  There is some N such that N > N implies ns(A, N) > 0.  From 

the first order conditions for (3.2) this implies m(A, N) = Asfs¢[ns(A, N)] for all N 

> N.  Hence, lim N®¥ m(A, N) = 0, which implies lim N®¥ Arfr¢[nr(A, N)] = 0 for 

all r = 1 . . R.  Thus, lim N®¥ nr(A, N) = ¥ for all r = 1 . . R.  From part (c), H(A, 

N)/N is decreasing in N.  Suppose that this ratio has a lower bound d > 0.  This 

implies å {Arfr[nr(A, N)] - dnr(A, N)} ≥ 0.  However, we have fr(nr)/nr ® 0 as nr 

® ¥ for r = 1 . . R.  This is obvious if there is a finite upper bound on fr(nr).  If 

fr(nr) is unbounded then using fr¢(nr) ® 0 as nr ® ¥ gives the same result.  The 

facts that lim N®¥ nr(A, N) = ¥ and fr(nr)/nr ® 0 as nr ® ¥ for all r = 1 . . R 

together imply that there is some sufficiently large N such that Arfr[nr(A, N)] - 

dnr(A, N) < 0 for all r = 1 . . R.  This contradicts the earlier inequality and gives 

the desired result lim N®¥ H(A, N)/N = 0. 

(e) Fix A > 0.  By the envelope theorem H(A, N) is differentiable in N and HN(A, N) 

is the Lagrange multiplier for (3.2).  Since H(A, 0) = 0, lim N®0 H(A, N)/N = lim 

N®0 HN(A, N).  When N > 0, the first order conditions for (3.2) give HN(A, N) = 

max {Arfr¢[nr(A, N)]}.  Because nr(A, N) is continuous in N with nr(A, 0) = 0 for 

all r, we have lim N®0 HN(A, N) = max {Arfr¢(0)}. 
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Proof of Proposition 3.3 (long-run equilibrium). 

(a) Suppose max {Arfr¢(0)} > y*.  From Proposition 3.2(e), this implies y(A, 0) > y*.  

From Proposition 3.2(c) and 3.2(d), y(A, N) is decreasing in N and goes to zero as 

N goes to infinity.  By continuity and monotonicity, there is a unique N(A) > 0 

such that y[A, N(A)] = y*.  The population N(A) satisfies N(A) = r[y(A, 

N(A))]N(A) in D3.2 because r(y*) = 1.  The SRE labor allocation n[A, N(A)] is 

obtained from (3.2).  The null population N = 0 with the SRE labor allocation n = 

0 constitutes an LRE because this satisfies N = r[y(A, N)]N from D3.2 and n = 0 

is optimal for N = 0 (in fact, it is the only feasible allocation).  

(b) Suppose Arfr¢(0) ≤ y* for all resources r = 1 . . R.  From Proposition 3.2(e), y(A, 

0) ≤ y*.  From Proposition 3.2(c), y(A, N) is decreasing in N.  Thus, y(A, N) < y* 

for all N > 0 and there is no N(A) > 0 with N(A) = r[y(A, N(A))]N(A).  This 

shows that there is no LRE with N(A) > 0.  As in part (a), N = 0 with n = 0 is an 

LRE.  
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Proof of Remark. 

(a) Suppose there is an LRE with N(A) > 0.  Note that y(A, N) is decreasing globally 

with y[A, N(A)] = y*.  Use N(A) for N* in A3.2.  Monotone population 

adjustment ensures {Nt} ® N(A) for every initial population N0 > 0.  Hence, 

N(A) is globally asymptotically stable.  The null LRE with N = 0 is unstable 

because {Nt} ® N(A) > 0 for every N0 Î (0, N(A)).  

(b) Suppose there is no LRE with N(A) > 0.  As in the proof of Proposition 3.3(b), y* 

≥ y(A, 0) > y(A, N) for all N > 0.  A straightforward extension of A3.2 gives {Nt} 

® 0 for all N0 > 0 so the LRE with N = 0 is globally asymptotically stable. 
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Proof of Proposition 3.4 (very-long-run equilibrium). 

 Before addressing (a) and (b), we establish preliminary results.  Let (K¢, N¢, n¢) be 

any non-null VLRE of type S.  Write the associated productivities as A¢ º A(a, K¢).  From 

the definition of type S we have kr¢ ≠ kr* for all r Ï S.  From the definition of VLRE in 

D3.3 we have nr¢ = 0 for all r Ï S.   

 From D3.3, n¢ is an optimal time allocation given (K¢, N¢).  From the first order 

conditions for (3.2), we have HN(A¢, N¢) ≥ Ar*fr¢(nr¢) for all r Î S where HN(A¢, N¢) is the 

Lagrange multiplier in the optimization problem for (3.2).  Equality must hold for at least 

one r Î S with nr¢ > 0 because N¢ > 0 and nr¢ = 0 for all r Ï S.  Moreover, HN(A¢, N¢) ≥ 

Ar(kr¢)fr¢(0) for all r Ï S by the first order conditions because nr¢ = 0 is optimal for r Ï S. 

 From D3.3, N¢ is a stationary population, and N¢ > 0 because the VLRE is non-

null.  Using Proposition 3.3(a), this implies H(A¢, N¢)/N¢ = y(A¢, N¢) = y*. 

 Now consider a constrained version of problem (3.2) where we maintain nr º 0 for 

all r Ï S regardless of the population level N.  These equalities must hold for any VLRE 

of type S.  This makes the productivities Ar for r Ï S irrelevant.  We continue to use the 

productivities Ar* for r Î S because these apply to all VLREs of type S.  Using the same 

method of proof as in Proposition 3.2(c), it can be shown that the function y(A, N) for the 

constrained problem is decreasing in N.  No non-null VLRE of type S can have a level of 

population different from N¢ > 0, because this is the only population that yields food per 

capita y* in the constrained problem.  The uniqueness of N¢ implies the uniqueness of n¢ 

= n(A¢, N¢) for all non-null VLREs of type S. 
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 Next, we show that if there is any non-null VLRE of type S, then (KS, NS, nS) as 

defined in the text is also a non-null VLRE of type S.  As above, let (K¢, N¢, n¢) be a non-

null VLRE of type S.  We already know that any other non-null VLRE of type S has the 

same values for N¢ and n¢ so it suffices to consider the case NS = N¢ and nS = n¢.  From the 

definition of type S, we have krS = kr¢ = kr* for all r Î S, which implies ArS = Ar¢ = Ar* 

for all r Î S.  Thus, the two arrays differ at most with respect to the techniques for r Ï S 

and the associated productivities.  From the construction of krS for r Ï S in the text, we 

have ArS ≤ Ar¢ for all r Ï S.  The fact that n¢ satisfies the first order conditions from (3.2) 

for (A¢, N¢) implies that nS satisfies the first order conditions from (3.2) for (AS, NS).  The 

Lagrange multipliers in the two problems are identical so HN(A¢, N¢) = HN(AS, NS).  This 

establishes that nS is an optimal time allocation for (AS, NS) as required for a VLRE in 

D3.3.  We have y(A¢, N¢) = y* from Proposition 3.3(a).  Because ArS = Ar¢ for all r with 

nrS = nr¢ > 0, we also have y(AS, NS) = y*.  Thus, NS > 0 is a stationary population as 

required for a VLRE in D3.3.  Finally, nrS = nr¢ = 0 for all r Ï S implies krS = kr* for all r 

such that nrS > 0.  Thus, KS is a stationary technology as required for a VLRE in D3.3.  

Therefore, (KS, NS, nS) is a non-null VLRE of type S.  

 Suppose condition (a) in Proposition 3.4 does not hold but (KS, NS, nS) is a non-

null VLRE of type S.  We must have nrS = 0 for all r Ï S.  Consider the constrained 

version of problem (3.2) where the equalities nr º 0 for all r Ï S hold as identities.  From 

the fact that (a) does not hold in Proposition 3.4, the proof used for Proposition 3.3(b) 

establishes that in the constrained problem there is no NS > 0 with y(AS, NS) = y*.  This 

result contradicts the requirement of a stationary population in D3.3.  It follows that (KS, 

NS, nS) cannot be a non-null VLRE of type S.  Hence, condition (a) in Proposition 3.4 is 
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necessary.  Moreover, if (a) fails, there cannot be any other non-null VLRE of type S 

because this would falsely imply that (KS, NS, nS) is a non-null VLRE of type S.   

 Suppose condition (a) in Proposition 3.4 holds.  Assume (KS, NS, nS) is a non-null 

VLRE of type S.  We must have nrS = 0 for all r Ï S.  The first order conditions for (3.2) 

imply HN(AS, NS) ≥ Ar(krmin)fr¢(0) for all r Ï S by the construction of KS and the fact that 

HN(AS, NS) is the Lagrange multiplier from problem (3.2).  This confirms that condition 

(b) in Proposition 3.4 is necessary.  Moreover, if (a) holds in Proposition 3.4 but (b) fails, 

there cannot be any other non-null VLRE of type S, because this would imply that (KS, 

NS, nS) is a non-null VLRE of type S, which would falsely imply that (b) holds. 

 Finally, we show sufficiency.  Suppose conditions (a) and (b) in Proposition 3.4 

both hold.  Let AS = A(a, KS).  By definition, nS = n(AS, NS) solves problem (3.2) for (AS, 

NS) so requirement (c) in D3.3 is satisfied.  From condition (b) in Proposition 3.4, the 

definition of the techniques krS for r Ï S, and the fact that HN(AS, NS) is the Lagrange 

multiplier from problem (3.2), optimality implies nrS = 0 for all r Ï S.  This result and the 

definition of the techniques krS for r Î S imply that requirement (a) in D3.3 is satisfied.  

From condition (a) in Proposition 3.4, the method of proof for Proposition 3.3(a) can be 

used to show that when the equalities nr = 0 hold for all r Ï S, the population level NS = 

N(AS) is positive.  Thus requirement (b) in D3.3 is satisfied and (KS, NS, nS) is non-null.     

 We have previously shown that if any non-null VLRE of type S exists, the array 

(KS, NS, nS) is a non-null VLRE of type S.  We have also shown that all non-null VLREs 

of type S have the same population and the same labor allocation. Thus, if any other such 

VLRE exists, it must have the population NS > 0 and the labor allocation nS.  This ends 

the proof of Proposition 3.4. 
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Proof of Proposition 3.5 (convergence to very-long-run equilibrium). 

 Proposition 3.1 gives transition probabilities for the number of correct digits qrt+1 

in the string krt+1 conditional on the number of correct digits qrt in the string krt.  

Here we must consider transition probabilities for the repertoire Kt+1 conditional 

on the repertoire Kt.  If resource r is latent (nrt = 0) then krt+1 = krt with certainty.  

If resource r is active (nrt > 0) and krt = kr* then krt+1 = krt = kr* with certainty.  If 

resource r is active (nrt > 0) and krt ≠ kr*, from Proposition 3.1 the probability that 

the number of correct digits in kr stays unchanged is exp[-lnrtrt(Q-qrt)] and the 

probability of one more correct digit is 1 – exp[-lnrtrt(Q-qrt)].  As shown in the 

proof of Proposition 3.1, we can ignore cases where more than one digit changes 

simultaneously for the same resource or the number of correct digits decreases.  

Hence, conditional on krt the probability that a particular incorrect digit becomes 

correct while all the other digits stay the same is {1 – exp[-lnrtrt(Q-qrt)]}/(Q-qrt).  

The probability that no digit changes is exp[-lnrtrt(Q-qrt)].  In the latter case krt+1 

= krt.  All other transition probabilities for krt+1 are zero. The updating processes 

are independent across resources r = 1 . . R given the current repertoire Kt, the 

current population Nt, and the optimal time allocation nt = n(At, Nt) where At = 

A(Kt).  Moreover, rt = Nt+1/Nt where Nt+1 is given by (3.3).  Thus, the updated 

population Nt+1 and all transition probabilities for Kt+1 are determined by (Kt, Nt).   

(a) Consider a fixed sample path {Kt, Nt} for t ≥ 0.  There are finitely many distinct 

repertoires, so at least one repertoire K¢ must be repeated infinitely many times.  

Because no correct digit can ever become incorrect, it is impossible to return to an 

earlier repertoire after departing from it.  Therefore, only one repertoire can occur 
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infinitely many times, and the occurrences of this K¢ must be consecutive.  Let T 

be the first period in which K¢ occurs.  Using N0 > 0 and r(y) > 0 for all y > 0, 

(3.3) implies NT > 0.  From Kt = K¢ for t ≥ T and constancy of the productivities 

A¢ = A(K¢) for t ≥ T, A3.2 in section 3.7 implies {Nt} ® N¢ = N(A¢).  The result 

{nt} ® n¢ = n(A¢, N¢) follows from the continuity of the solutions in (3.2). 

(b) Fix the climate a > 0.  We write the productivity vector for a given repertoire as 

A(K).  When Proposition 3.3(a) applies, we will abbreviate the LRE population as 

N[A(K)] = N(K) > 0 and say that K is non-null.  When Proposition 3.3(b) applies, 

we will write N[A(K)] = N(K) = 0 and say that K is null.  

  From (3.3), if N0 = 0 then Nt = 0 for all t ≥ 0.  This implies that the labor 

allocation is nt = 0 for all t ≥ 0.  Because all resources are latent in all periods, the 

initial repertoire K0 is preserved with certainty and Kt = K0 for all t ≥ 0.  Thus, the 

initial (and terminal) repertoire generates a trivial VLRE.  We instead assume N0 

> 0, and use r(y) > 0 for all y > 0 in (3.3) to ensure Nt > 0 for all t ≥ 0, whatever 

the sample path {Kt, Nt} may be.  This does not rule out the possibility that {Nt} 

® 0 so the population is extinct in the limit.  This occurs if the terminal repertoire 

cannot support food per capita above y* at any N > 0, as in Proposition 3.3(b).  

  We will say K is of type S when kr = kr* for r Î S and kr ≠ kr* for r Ï S.  

When r Ï S is non-empty, we define m(K) º max {argr(kr)fr¢(0) for r Ï S} to be 

the maximum marginal product, evaluated at zero labor input, among all the 

resources whose technique can be improved.  For any K where S is a non-empty 

proper subset of {1 . . R} we have 

    HN[A(K), 0] = max {argr(kr)fr¢(0) for r = 1 . . R}  
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            ≥ max {argr(kr)fr¢(0) for r Ï S} º m(K)  

            > 0 = HN[A(K), ¥] 

 where the first equality is from Proposition 3.2(e); the weak inequality is obvious; 

the strict inequality follows from a > 0, gr(kr) > 0 for all r and kr, and fr¢(0) > 0 for 

all r from A3.1; and the second equality is from Proposition 3.2(d).  Define M(K) 

implicitly by HN[A(K), M(K)] º m(K).  A unique M(K) Î [0, ¥) exists by the 

above results and the fact that HN[A(K), N] is continuous and decreasing in N. 

  Whenever 0 < N ≤ M(K) we have HN[A(K), N] ≥ m(K) where HN[A(K), 

N] is the Lagrange multiplier in problem (3.2).  By the first order conditions, this 

multiplier is equal to the marginal products of all the active resources (those r Î S 

with nr > 0).  Optimality requires nr = 0 for all r Ï S, so no improvable technique 

is used.  Whenever N > M(K) we have HN[A(K), N] < m(K).  In this situation the 

Lagrange multiplier is less than the marginal product evaluated at zero for some r 

Ï S.  Hence, optimality requires nr > 0 for at least one r Ï S, so some improvable 

technique is used. 

  In the special case where S is empty, so all techniques are improvable, we 

have m(K) = HN[A(K), 0] = max {argr(kr)fr¢(0) for r = 1 . . R}.  This implies M(K) 

= 0.  For any N > 0 there must be some r with nr > 0, so at least one improvable 

technique is used.  In the special case where S = {1 . . R}, we have K = K* and 

m(K*) is undefined.  For this situation we will define M(K*) = ¥.  If K* is ever 

reached, it is terminal, with {Nt} ® N* and {nt} ® n(A*, N*).  

   Each K, including the two special cases just discussed, belongs to one of 

two sets: 



 16 

 (i)  repertoires with 0 ≤ N(K) ≤ M(K)  

 (ii)  repertoires with 0 ≤ M(K) < N(K)   

 First, consider any K¢ in set (i).  We will show that if K¢ is terminal then the array 

(K¢, N¢, n¢) generated by K¢ is a VLRE.  If N(K¢) > 0 then N¢ = N(K¢) is an LRE 

population; n¢ = n[A(K¢), N¢)] is optimal for the parameters (A¢, N¢); and N(K¢) ≤ 

M(K¢) implies nr¢ = 0 for all r Ï S so no improvable technique is used.  Thus, we 

have a (non-null) VLRE.  If N(K¢) = 0 then zero is an LRE population; n¢ = 0 is 

optimal (in fact, it is the only feasible time allocation); and again no improvable 

technique is used.  Thus, we have a (null) VLRE.   

  Next, consider any K¢ in the set (ii).  To keep notation compact, write M¢ = 

M(K¢) and N¢ = N(K¢) so 0 ≤ M¢ < N¢.  We will show that this repertoire cannot be 

terminal for any initial population N0 > 0.  For simplicity, suppose Kt = K¢ for all t 

≥ 0 (the proof is the same if the time of first occurrence for K¢ is T > 0).  Suppose 

N0 Î (M¢, ¥).  (Note that if M¢ = 0, this must be true.)  A3.2 ensures that if N0 < 

N¢ then Nt ≥ N0 for all t ≥ 0, and if N¢ ≤ N0 then Nt ≥ N¢ for all t ≥ 0.  Thus M¢ < 

min {N¢, N0} ≤ Nt for all t ≥ 0.  Now suppose instead that N0 Î (0, M¢].  In this 

case Kt = K¢ for all t ≥ 0, N0 ≤ M¢ < N¢, and A3.2 together imply that there is a 

finite T > 0 such that NT Î (M¢, ¥).  This reduces to the previous case with t = T 

substituted for t = 0, so M¢ < min {N¢, NT} ≤ Nt for all t ≥ T.   

Recall that for any N > M¢ some r Ï S must be active.  Moreover, from 

Proposition 3.2(a) the scale effect ensures that if nr > 0 for some N, we have nr > 0 

for all larger N for the same resource r Ï S.  We have shown that for any N0 > 0, 
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there is some finite T ≥ 0 such that M¢ < min {N¢, NT} ≤ Nt for all t ≥ T.  The fact 

that the productivity vector A¢ remains constant for t ≥ T, the scale effect from 

Proposition 3.2(a), and the construction of M¢ ensure that for some r Ï S there is a 

lower bound nr where 0 < nr ≤ nrt for all t ≥ T.  Let rt º Nt+1/Nt as in Proposition 

3.1.  A3.2 guarantees that if NT ≤ N¢ then rt ≥ r º 1 for all t ≥ T and if NT > N¢ 

then rt ≥ r º N¢/ NT > 0 for all t ≥ T.  We also have Q - qrt ≥ 1 for all t ≥ T due to 

kr¢ ≠ kr*.  Using these lower bounds in Proposition 3.1, for each t ≥ T the 

probability that kr remains constant cannot exceed exp(-lrnr) < 1.  Over the 

unbounded interval t ≥ T the probability that kr is constant vanishes.  Therefore, 

K¢ cannot be terminal. 

  We have shown in Proposition 3.5(a) that for any specified initial 

conditions (K0, N0), each sample path has some terminal repertoire.  There are 

finitely many repertoires, so we can partition the set of sample paths into finitely 

many subsets distinguished by the terminal repertoire K¢.  We have also shown 

that when N0 > 0, any terminal repertoire such that 0 ≤ M(K¢) < N(K¢) has 

probability zero.  This implies that the terminal repertoire has 0 ≤ N(K¢) ≤ M(K¢) 

with probability one.  Finally, we have shown that if the latter inequalities hold, 

the terminal repertoire K¢ generates a terminal array (K¢, N¢, n¢) that is a VLRE.  

 (c) Suppose 0 < Nt < N[A(Kt)].  From A3.2, Proposition 3.1, conservation of latent 

strings, and the fact that N(A) is non-decreasing we have Nt < Nt+1 < N[A(Kt)] ≤ 

N[A(Kt+1)].  When 0 < N0 < N[A(K0)], we can repeat the argument to obtain 0 < 

Nt < Nt+1 for all t ≥ 0.  When 0 < N0 = N[A(K0)], we have Nt = N[A(K0)] for 0 ≤ t 

≤ T where T is the first period (if any) in which a mutation occurs for an active 
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resource.  This yields N0 = NT < N[A(KT)].  For t ≥ T, {Nt} is increasing as 

before.  When N0 > N[A(K0)] ≥ 0, A3.2 ensures N0 > N1 > N[A(K0)].  If there is a 

period T ≥ 1 in which a mutation to an active resource yields NT ≤ N[A(KT)] then 

{Nt} is non-decreasing for t ≥ T by the reasoning used above (and increasing if NT 

< N[A(KT)] holds).  Otherwise, we have Nt > N[A(Kt)] for all t ≥ 0.  From A3.2 

this implies Nt > Nt+1 > N[A(Kt)] for all t ≥ 0 and {Nt} is decreasing.  
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Proof of Proposition 3.6 (neutral shocks). 

(a) Let the climate change permanently to a¢ at the start of period t = 0 before labor is 

allocated.  The repertoire and population (K0, N0) at t = 0 are inherited from the 

previous VLRE.  The productivity vector in period t = 0 is qA0 = qA(a0, K0) = 

A(qa0, K0).  Due to the neutrality of the shock, the optimal labor allocation in 

(3.2) for t = 0 is unaffected (the solution n(A, N) is homogeneous of degree zero 

in A).  We use n0 interchangeably for the labor allocation in the original VLRE 

and the allocation in period t = 0 after the climate change occurs.  If K0 is held 

constant over all subsequent periods, the new LRE population is N¢ = N(qA0) > 0.    

We first show that for any t ≥ 0, if Kt = K0 and Nt Î (N¢, N0], then Kt+1 = 

K0 and Nt+1 Î (N¢, N0].  Using Kt = K0, the labor allocation associated with (Kt, 

Nt) is nt = n(qA0, Nt).  Two necessary conditions for krt+1 ≠ krt are (i) krt ≠ kr* and 

(ii) nrt > 0.  Any r satisfying (ii) has nr(qA0, Nt) > 0.  Using N0 ≥ Nt and 

Proposition 3.2(a) this implies nr(qA0, N0) > 0.  But then nr(A0, N0) > 0 by the 

homogeneity of n(A, N) in A.  This implies kr0 = krt = kr* because (K0, N0, n0) is a 

VLRE for climate a0.  Thus (i) cannot hold.  This shows that krt+1 = krt for all r and 

hence Kt+1 = K0.  We also have H(qA0, N¢)/N¢ = y* > H(qA0, Nt)/Nt because N¢ > 

0 is the LRE population for qA0, Nt > N¢, and food per capita is decreasing in N 

for fixed productivity levels.  The assumption N¢ > 0 along with A3.2 implies Nt+1 

Î (N¢, Nt) Í (N¢, N0].   

Clearly Kt = K0 and Nt Î (N¢, N0] for t = 0.  We have also shown that for 

any t ≥ 0, if Kt = K0 and Nt Î (N¢, N0] then Kt+1 = K0 and Nt+1 Î (N¢, N0].  
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Together these imply Kt = K0 for all t ≥ 0.  Moreover, A3.2 implies {Nt} ® N¢ = 

N(qA0) < N0.  This establishes deterministic convergence to the unique VLRE 

(K¢, N¢, n¢) such that K¢ = K0, N¢ = N(qA0) < N0, and n¢ = n[qA0, N(qA0)].     

Suppose nr0 = nr(A0, N0) = 0.  If nr¢ = nr(qA0, N¢)  > 0 then nr(A0, N¢)  > 0 

by homogeneity.  Moreover, nr(A0, N0) > 0 from N¢ < N0 and Proposition 3.2(a).  

This is a contradiction, and therefore nr0 = 0 implies nr¢ = 0.  This shows that the 

active resources in n¢ are a subset of the active resources in n0.  

Starting from the non-null VLRE (K¢, N¢, n¢) associated with climate a¢, 

suppose in period t = 0 the climate returns permanently to a0 = a¢/q.  We will show 

that for any t ≥ 0, if Kt = K¢ and Nt Î [N¢, N0), then Kt+1 = K¢ and Nt+1 Î [N¢, N0).  

Using Kt = K¢ = K0, the labor allocation associated with (Kt, Nt) is nt = n(A0, Nt).  

As before, two necessary conditions for krt+1 ≠ krt are (i) krt ≠ kr* and (ii) nrt > 0.  

Suppose there is some r satisfying (ii).  For this r we have nr(A0, Nt) > 0.  Using 

Nt < N0 and Proposition 3.2(a) implies nr(A0, N0) > 0.  But each r with nr0 = nr(A0, 

N0) > 0 has kr0 = krt = kr* because (K0, N0, n0) is a VLRE for a0 and Kt = K¢ = K0.  

Thus, (i) cannot hold.  This shows that krt+1 = krt for all r and therefore Kt+1 = K¢.  

Using Nt < N0, we have H(A0, N0)/N0 = y* < H(A0, Nt)/Nt because (K0, N0, n0) is 

a VLRE for a0 and food per capita is decreasing in N for fixed productivities.  

Assumption A3.2 then implies Nt+1 Î [Nt, N0) Í [N¢, N0).  This yields the desired 

result.  Clearly Kt = K¢ and Nt Î [N¢, N0) for t = 0 (to avoid notational confusion 

recall that in this paragraph, the system is starting from (K¢, N¢, n¢) and N0 is the 

LRE population for a different VLRE).  We have shown that for any t ≥ 0, if Kt = 
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K¢ and Nt Î [N¢, N0), then Kt+1 = K¢ and Nt+1 Î [N¢, N0).  This implies that Kt = K¢ 

= K0 for all t ≥ 0.  Also, A3.2 implies that {Nt} ® N0.  This shows deterministic 

convergence to the original VLRE (K0, N0, n0). 

(b) By Proposition 3.5(b), the terminal array (K¢, N¢, n¢) is a VLRE.  From the fact 

that (K0, N0, n0) is a VLRE for climate a0 and H(A, N) is linearly homogeneous in 

A, we have y* = H(A0, N0)/N0 < H(qA0, N0)/N0.  This shows that N0 < N(qA0).  

Necessity.  Suppose nr[qA0, N(qA0)] = 0 for all r such that kr0 ≠ kr*.  Choose any t 

≥ 0.  We will show that if Kt = K0 and Nt Î [N0, N(qA0)), then Kt+1 = K0 and Nt+1 

Î [N0, N(qA0)).  Consider any resource r.  Two necessary conditions for krt+1 ≠ krt 

are (i) krt ≠ kr* and (ii) nrt > 0.  Using Nt < N(qA0) and Proposition 3.2(a), (ii) 

gives nr[qA0, N(qA0)] > 0.  But our initial supposition that nr[qA0, N(qA0)] = 0 for 

all r such that kr0 ≠ kr* implies kr0 = kr*.  Using Kt = K0, this implies krt = kr0 = 

kr*, so (i) cannot hold.  Therefore, krt+1 = krt for all r and Kt+1 = Kt = K0.  Using Nt 

< N(qA0), the definition of N(qA0), and the fact that food per capita is decreasing 

in N, we have H[qA0, N(qA0)]/N(qA0) = y* < H(qA0, Nt)/Nt.  Using N0 ≤ Nt, 

A3.2 yields Nt+1 Î [Nt, N(qA0)) Í [N0, N(qA0)) as claimed.  Clearly Kt = K0 and 

Nt Î [N0, N(qA0)) for t = 0, so Kt = K0 for all t ≥ 0.  Hence, K¢ = K0 and N¢ = 

N(qA0).  This shows that a necessary condition for K¢ ≠ K0 is nr[qA0, N(qA0)] > 0 

for some r such that kr0 ≠ kr*.   

Sufficiency.  Suppose nr[qA0, N(qA0)] > 0 for some r such that kr0 ≠ kr*, but K¢ = 

K0.  Because K¢ = K0, the terminal productivity vector is A¢ = qA0.  Furthermore, 

because (K¢, N¢, n¢) is a VLRE we have H(qA0, N¢)/N¢ = y* where N¢ = N(qA0).  
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The conditions for VLRE also require nr¢ = nr[qA0, N(qA0)] = 0 for all r such that 

kr¢ ≠ kr*.  From K¢ = K0 this is true for all r such that kr0 ≠ kr*.  But by assumption 

we have nr[qA0, N(qA0)] > 0 for some r such that kr0 ≠ kr*.  This is a contradiction 

and therefore K¢ ≠ K0.  

 We have shown that N(qA0) > N0 holds in all cases.  Moreover, we have 

shown that if (*) does not hold then N¢ = N(qA0).  Assume (*) does hold.  We 

need to show that N¢ > N(qA0).  Define A¢ º A(a¢, K¢).  Because (K¢, N¢, n¢) is a 

VLRE for a¢ we have H(A¢, N¢)/N¢ = y* = H[qA0, N(qA0)]/N(qA0).  We cannot 

have N¢ < N(qA0) because then A¢ ≥ qA0 gives y* = H[qA0, N(qA0)]/N(qA0) < 

H(qA0, N¢)/N¢ ≤ H(A¢, N¢)/N¢ = y*, which is a contradiction.  Thus, N¢ ≥ N(qA0). 

 Next, we rule out N¢ = N(qA0).  Suppose N¢ = N(qA0) holds.  This gives 

H(A¢, N¢)/N¢ = y* = H[qA0, N(qA0)]/N(qA0) and so H(A¢, N¢) = H[qA0, N(qA0)].  

Consider the case n¢ ≠ n[qA0, N(qA0)].  From the uniqueness of solutions in (3.2) 

and the fact that both of the labor allocations involved are feasible, we have H(A¢, 

N¢) = å qar0gr(kr¢)fr(nr¢) > å qar0gr(kr¢)fr[nr(qA0, N¢)] ≥ å qar0gr(kr0)fr[nr(qA0, N¢)] 

= H[qA0, N(qA0)] where the weak inequality follows from gr(kr¢) ≥ gr(kr0) for all r 

due to Proposition 3.1.   This contradicts H(A¢, N¢) = H[qA0, N(qA0)].    

 Now suppose N¢ = N(qA0) and consider the case n¢ = n[qA0, N(qA0)].  

H(A¢, N¢) = H[qA0, N(qA0)] implies that å qar0gr(kr¢)fr(nr¢) = å qar0gr(kr0)fr(nr¢) or 

å ar0fr(nr¢)[gr(kr¢) – gr(kr0)] = 0 where gr(kr¢) ≥ gr(kr0) for all r.  Because (*) holds 

with n¢ = n[qA0, N(qA0)], there exists some r for which nr¢ = nr[qA0, N(qA0)] > 0 

and kr0 ≠ kr*.  Because (K¢, N¢, n¢) is a VLRE, nr¢ > 0 implies kr¢ = kr*.  Hence, 
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there is at least one r with fr(nr¢) > 0 and gr(kr¢) > gr(kr0).  This contradicts å 

ar0fr(nr¢)[gr(kr¢) – gr(kr0)] = 0.  Therefore, (*) implies N¢ > N(qA0). 

Suppose a0 is permanently restored and (*) does not hold.  We want to 

show that starting from (K¢, N¢, n¢) the system converges to (K0, N0, n0).  We have 

already shown that if (*) does not hold then K¢ = K0.  The reversion to a0 from qa0 

is a neutral negative shock.  Proposition 3.6(a) shows that the system converges to 

a VLRE (K¢¢, N¢¢, n¢¢) such that K¢¢ = K¢ = K0.  The productivity vector for this 

VLRE is A¢¢ = A(a0, K¢¢) = A0.  Furthermore, H(A0, N0)/N0 = y* from the fact that 

(K0, N0, n0) is a non-null VLRE.  This implies N¢¢ = N0.  The uniqueness of the 

solution in (3.2) gives n¢¢ = n(A0, N0) = n0. 

Assume a0 is permanently restored and (*) does hold.  We want to show 

that starting from (K¢, N¢, n¢) the system converges to a VLRE (K¢¢, N¢¢, n¢¢) with 

K¢¢ = K¢ ≠ K0 and N¢ > N¢¢ ≥ N0.  We have already shown that (*) implies K¢ ≠ K0.  

Proposition 3.6(a) shows that the system converges to a VLRE with K¢¢ = K¢ and 

N¢ > N¢¢.  Thus, it suffices to show N¢¢ ≥ N0, and to establish conditions under 

which this inequality is strict.  First, we show that N¢¢ ≥ N0.  Let A¢¢ = A(a0, K¢¢), 

where A¢¢ ≥ A0 due to Proposition 3.1.  Because H(A, N) is non-decreasing in A, 

we have H(A¢¢, N0)/N0 ≥  H(A0, N0)/N0 = y*.  This implies N¢¢ ≥ N0.   

Now continue to assume (*) does hold and suppose N¢¢ = N0 with n¢¢ ≠ n0.  

Because n0 is feasible in the allocation problem for (A¢¢, N¢¢) and solutions in (3.2) 

are unique, H(A¢¢, N¢¢) = å ar0gr(kr¢¢)fr(nr¢¢) > å ar0gr(kr¢¢)fr(nr0) ≥ å ar0gr(kr0)fr(nr0) 

= H(A0, N0).  This gives y* = H(A¢¢, N¢¢)/N¢¢ >  H(A0, N0)/N0 = y*, which is a 
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contradiction.  Therefore, if N¢¢ = N0 then n¢¢ = n0.  We have two possibilities: (i) 

N¢¢ = N0 and n¢¢ = n0 or (ii) N¢¢ > N0 and n¢¢ ≠ n0.  In either case, because (K0, N0, 

n0) is a VLRE we have kr0 = kr* for all r with nr0 > 0.  Proposition 3.1 implies kr¢¢ 

= kr¢ = kr* for all r with nr0 > 0. 

We proceed to consider two situations and will show that they correspond 

to the possibilities (i) and (ii) above. 

(i) Suppose HN(A0, N0) ≥ ar0gr(kr¢¢)fr¢(0) for all r such that nr0 = 0.  We know 

kr¢¢ = kr0 for all r such that nr0 > 0.  Together these imply that n0 satisfies the first 

order conditions for (3.2) with parameters (A¢¢, N0).  The first order conditions for 

(3.2) are sufficient for a solution so H(A¢¢, N0)/N0 = H(A0, N0)/N0 = y*.    This 

shows that (K¢¢, N0, n0) is a VLRE for the climate a0.  But from Proposition 3.6(a), 

the VLRE (K¢¢, N¢¢, n¢¢) is unique.  Thus, N¢¢ = N0 and n¢¢ = n[A(a0, K¢¢), N0] = n0. 

(ii) Suppose HN(A0, N0) < ar0gr(kr¢¢)fr¢(0) for some r such that nr0 = 0.  In this 

case n0 does not satisfy the first order conditions for (3.2) with parameters (A¢¢, 

N0).  Thus, n[A(a0, K¢¢), N0] ≠ n0.  Using N¢¢ ≥ N0 and the uniqueness of solutions 

in (3.2), this gives H(A¢¢, N¢¢) ≥ H(A¢¢, N0) > å ar0gr(kr¢¢)fr(nr0) ≥ å ar0gr(kr0)fr(nr0) 

= H(A0, N0).  Now suppose N¢¢ = N0.  This implies y* = H(A¢¢, N¢¢)/N¢¢ > H(A0, 

N0)/N0 = y*, which is a contradiction.  Therefore, N¢¢ > N0.  This implies n¢¢ ≠ n0.   

 Finally, continue with the supposition in the preceding paragraph for case 

(ii).  If nr¢¢ = 0 for all r such that nr0 = 0, then from N¢¢ > N0 there must be at least 

one s with 0 < ns0 < ns¢¢.  Using kr¢¢ = kr* for all r with nr0 > 0, strict concavity of fs 

from A3.1, the first order conditions for (3.2), and the fact that HN is the Lagrange 
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multiplier in the first order conditions, this yields HN(A¢¢, N¢¢) = as0gs(ks¢¢)fs¢(ns¢¢) 

< as0gs(ks*)fs¢(ns0) = HN(A0, N0).  But then HN(A¢¢, N¢¢) < HN(A0, N0) < 

ar0gr(kr¢¢)fr¢(0) for some r such that nr0 = 0.  This contradicts the optimality of nr¢¢ = 

0 for all r such that nr0 = 0.  Therefore nr¢¢ > 0 for at least one r such that nr0 = 0.  

This completes the proof of Proposition 3.6. 
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Proof of Proposition 4.1 (optimal labor allocation). 

In all cases the solution in (4.2) is unique due to strict concavity, and first order necessary 

conditions (FOC) for a maximum are also sufficient. 

(a) By A4.1 there is a unique xf > 0 satisfying the condition in part (a) of Proposition 

4.1.  

(i) We have f¢(L) ≥ f¢(xf) º kg¢(0).  Thus, Lf = L and Lg = 0 satisfies the FOC 

for a maximum. 

(ii) The solution cannot have Lf = 0 because then the FOC implies kg¢(L) ≥ 

f¢(0) > kg¢(0) > kg¢(L), which is a contradiction.  The solution cannot have 

Lg = 0 because then the FOC implies f¢(L) ≥ kg¢(0) º f¢(xf) > f¢(L), which 

is a contradiction.  It follows that Lf > 0 and Lg > 0.  The FOC for an 

interior solution is f¢(Lf) = kg¢(Lg). 

(b) The proof parallels (i) and (ii) in part (a). 

(c) The proof parallels (ii) in part (a). 

(d) H(L, k) is continuous in (L, k) by the theorem of the maximum.  It is increasing in 

L for a fixed k because f is increasing in Lf and g is increasing in Lg.  To show 

that H is strictly concave in L, fix k > 0, choose any L¢ ≠ L¢¢, and choose any µ Î 

(0, 1).  Let (Lf¢, Lg¢) be optimal for the total labor supply L¢ and let (Lf¢¢, Lg¢¢) be 

optimal for the total labor supply L¢¢.  Define Lf* º µLf¢ + (1-µ)Lf¢¢ and Lg* º µLg¢ 

+ (1-µ)Lg¢¢.  Notice that (Lf*, Lg*) is a feasible allocation of the total labor supply 

L* = µL¢ + (1-µ)L¢¢.  This implies H(L*, k) ≥ f(Lf*) + kg(Lg*) > µf(Lf¢) + (1-

µ)f(Lf¢¢) + µkg(Lg¢) + (1-µ)kg(Lg¢¢) = µH(L¢, k) + (1-µ)H(L¢¢, k).  The strict 

inequality in this sequence follows because f(Lf*) > µf(Lf¢) + (1-µ)f(Lf¢¢) due to 
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the strict concavity of f, and kg(Lg*) > µkg(Lg¢) + (1-µ)kg(Lg¢¢) due to the strict 

concavity of g.  This establishes that H(L, k) is strictly concave in L. 

(e) Due to H(0, k) = 0, the strict concavity of H implies H(µL, k) > µH(L, k) for all L 

> 0 and µ Î (0, 1).  This yields H(µL, k)/µL > H(L, k)/L for all L > 0 and µ Î (0, 

1).  Thus, h(L, k) º H(L, k)/L is decreasing in L.   

(f) (i) Let [Lf(L), Lg(L)] be the optimal allocation for L > 0.  One and only one of 

parts (a), (b), or (c) above must apply.  Suppose (a) applies.  Then for sufficiently 

small L > 0 we have H(L, k) = f(L) and h(L, k) = f(L)/L.  This implies that as L 

® 0, we have h(L, k) ® f¢(0) > kg¢(0).  Therefore, h(0, k) = max {f¢(0), kg¢(0)}.  

The proofs for (b) and (c) are similar. 

 (ii) For a fixed k > 0, whenever L is sufficiently large we have Lf(L) > 0 and 

Lg(L) > 0 with f¢[Lf(L)] = kg¢[Lg(L)].  From part (e) above, h(L, k) is decreasing 

in L.  Suppose there is a lower bound d > 0 such that h(L, k) ≥ d for all L > 0.  

This implies f[Lf(L)]/L + kg[Lg(L)]/L ≥ d > 0 for all L > 0.  We have f(Lf)/Lf ® 0 

as Lf ® ¥.  This is obvious if f has a finite upper bound.  If f is unbounded, then 

using f¢(Lf) ® 0 as Lf ® ¥ from A4.1 gives the same result.  Likewise, g(Lg)/Lg 

® 0 as Lg ® ¥.  The lower bound d > 0 implies that Lf(L) ® ¥ and Lg(L) ® ¥ 

cannot both hold when L ® ¥.  Therefore, one or the other must have a finite 

upper bound M > 0.  Suppose Lf(L) ≤ M for all L.  Then f¢[Lf(L)] ≥ f¢(M) > 0 for 

all L > 0.  Since Lf(L) has a finite upper bound, Lg(L) ® ¥ must hold as L ® ¥.  

Thus, kg¢[Lg(L)] ® 0 as L ® ¥.  For sufficiently large L, this contradicts the first 

order condition f¢[Lf(L)] = kg¢[Lg(L)].  The same is true if Lg(L) has a finite upper 
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bound.  Thus, neither Lf(L) nor Lg(L) has an upper bound, so there is no lower 

bound d > 0 and h(L, k) ® 0 as L ® ¥. 
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Proof of Proposition 4.2 (short-run equilibrium). 

(a) For all y ≥ qAh(0) we have h(y/qA) = 0 due to (4.3a).  Also, qA > qB implies y ≥ 

qBh(0) so we have h(y/qB) = 0 due to (4.3b).  Hence, D(y) = 0 < N and no such y 

solves (4.3c).  For y ≤ qAh(0), D(y) is continuous and decreasing because h(y/qA) 

is continuous and decreasing while h(y/qB) is continuous and non-increasing.  

Also, D(y) ® ¥ as y ® 0 because h(L) ® 0 as L ® ¥ from Proposition 4.1(f).  

Because N > 0 is finite, D[qAh(0)] = 0, D(0) = ¥, and D(y) is continuous and 

decreasing on (0, qAh(0)], there is a unique y(N) Î (0, qAh(0)) such that D[y(N)] 

= N. 

(b) Consider the unique value of y from part (a) that solves (4.3c) and choose LA and 

LB as in Proposition 4.2(b).  The fact that y solves (4.3c) implies that condition (c) 

in D4.1 holds.  Using y < qAh(0) when D(y) = N as in Proposition 4.2(a), with LA 

= h(y/qA) > 0 as in (4.3a), implies qAh(LA) = y so that condition (a) in D4.1 holds.  

From (4.3b), either (i) LB = h(y/qB) > 0, which implies qBh(LB) = y, or (ii) LB = 

h(y/qB) = 0, which implies qBh(0) ≤ y.  Condition (b) in D4.1 holds in either case.  

Because all the requirements in the definition D4.1 are satisfied, (y, LA, LB) is an 

SRE.  To show that it is unique, suppose (y¢, LA¢, LB¢) is a different SRE.  

Condition (a) in D4.1 implies LA¢ = h(y¢/qA) > 0 and condition (b) in D4.1 implies 

either (i) LB¢ = h(y¢/qB) > 0 or (ii) LB¢ = h(y¢/qB) = 0 with y¢ ≥ qBh(0).  Condition 

(c) in D4.1 implies lLA¢ + (1-l)LB¢ = N.  This implies D(y¢) º lh(y¢/qA) + (1-

l)h(y¢/qB) = N.  Proposition 4.2(a) states that there is a unique solution to (4.3c), 

so we have y = y¢.  Thus, LA¢ ≠ LA or LB¢ ≠ LB or both.  But this is impossible 
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because for any given y there is a unique solution for LA from (a) in D4.1 and a 

unique solution for LB from (b) in D4.1. 

(c) Continuity of y(N) follows from continuity of D(y) in (4.3c).  y(N) is decreasing 

because D(y) is decreasing over the relevant range.  To show that y(N) ® 0 as N 

® ¥, use (4.3c) to write the identity D[y(N)] º lh[y(N)/qA] + (1-l)h[y(N)/qB] º 

N where y(N) is decreasing.  Suppose there is a lower bound d > 0 such that y(N) 

≥ d for all N > 0.  Because h is decreasing, D[y(N)] ≤ lh(d/qA) + (1-l)h(d/qB) for 

all N > 0.  Choosing an N that exceeds the right-hand side of this inequality gives 

a contradiction.  Thus, there is no such lower bound and y(N) ® 0 as N ® ¥.  
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Proof of Proposition 4.3 (long-run equilibrium). 

(a) Suppose qAh(0, k) > y*.  By Proposition 4.1 there is an LA > 0 such that qAh(LA, 

k) = y* or equivalently LA = h(y*/qA, k) > 0.  Set LB = h(y*/qB, k) ≥ 0 and N = 

lLA + (1-l)LB > 0.  The triple (LA, LB, N) is an LRE because (LA, LB, y*) is an 

SRE for N.  Any other LRE must have the same (LA, LB) to satisfy conditions (a) 

and (b) in D4.1 with food income y*.  It must therefore have the same N to satisfy 

condition (c) in D4.1.  This establishes uniqueness. 

(b) Suppose there is some (LA, LB, N) with N > 0 that is an LRE.  From condition (a) 

in D4.1 we must have qAh(LA, k) = y* with LA > 0.  However, this implies qAh(0, 

k) > y*, which contradicts the assumption qAh(0, k) ≤ y*.      
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Proof of Proposition 4.4 (very-long-run equilibrium). 

(a) Necessity.  From (b) in D4.3, a necessary condition for a VLRE with such a value 

of k is LAg = LBg = 0.  Using Proposition 4.1, LAg = 0 occurs if and only if f¢(LA) ≥ 

kg¢(0).  From (a) in D4.3, another necessary condition is that (LA, LB, N) form an 

LRE for the given k.  In turn, this requires that (LA, LB, y*) form a SRE for N > 0.  

From (a) in D4.1, this implies qAh(LA, k) = y*.  Due to LAg = 0 this reduces to the 

condition qAf(LA)/LA = y*.  There is such an LA > 0 iff qAf¢(0) > y*.  Together 

these results show the necessity of the conditions in Proposition 4.4(a). 

 Sufficiency.  Suppose the conditions in Proposition 4.4(a) are satisfied.  Compute 

LA, LB, and N as in the Proposition.  We need to show that this gives a non-null 

VLRE.  LA > 0 implies N > 0 so any VLRE will be non-null.  Condition (b) in 

D4.3 is satisfied because (i) f¢(LA) ≥ kg¢(0) implies LAg = 0 from Proposition 4.1; 

and (ii) qB < qA implies LB < LA, which implies f¢(LB) ≥ kg¢(0), and this in turn 

implies LBg = 0 from Proposition 4.1.  Condition (a) in the definition of VLRE 

from D4.3 is satisfied because the definition of LRE from D4.2 is satisfied. 

(b) When k = k*, condition (b) in D4.3 is satisfied.  Condition (a) in D4.3 reduces to 

the conditions for a (non-null) LRE.  By Proposition 4.3(a), these conditions can 

be satisfied iff qAh(0, k*) > y*.  When this is true, condition (a) in D4.1 implies 

that LA > 0 satisfies qAh(LA, k*) = y*.  Condition (b) in D4.1 implies that if qBh(0, 

k*) > y* then LB > 0 satisfies qBh(LB, k*) = y*; otherwise LB = 0.  Condition (c) 

in D4.1 gives N = lLA + (1-l)LB > 0. 
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Proof of Proposition 4.5 (baseline VLRE). 

 By Proposition 4.4(a), if k < k* there is a non-null VLRE iff qAf¢(0) > y* and the 

value of LA such that qAf(LA)/LA = y* gives f¢(LA) ≥ kg¢(0).  This gives conditions (4.9a) 

and (4.9c).  It is automatic that only hunting is used.  Adding the requirement that only 

sites of type A are active implies LB = 0.  By Proposition 4.4(a) this holds iff qBf¢(0) ≤ y*.  

This gives condition (4.9b).  
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Proof of Proposition 4.6 (short run; climate only). 

(a) In the baseline equilibrium LB0 = 0 because type-B sites are not used.  Thus, N0 = 

lLA0 > 0 where LA0 is the baseline population at a type-A site.  We have f¢(LA0) ≥ k0g¢(0) 

from (4.9c).  Because N0 = lLA + (1-l)LB is fixed in the short run and LB ≥ 0 under the 

new climate regime, we must have LA ≤ LA0 under the new climate regime.  Because 

there is no change in k0, we have f¢(LA) ≥ k0g¢(0) so gathering cannot be used at the type-

A sites.  Because LB < LA in every SRE, we have f¢(LB) > k0g¢(0) so gathering cannot be 

used at type-B sites either.  

(b) In the baseline equilibrium regional population is N0 = lLA0 = lh(y*/qA0, k0) 

where the second equality follows from condition (a) in D4.1 and (4.3a).  From (4.5), 

type-B sites are used in period t = 0 under the new climate regime iff N0 > N*(k0) º 

lh[qB*h(0, k0)/qA*, k0] or equivalently h(y*/qA0, k0) > h[qB*h(0, k0)/qA*, k0].  Because h 

= h-1 is decreasing in its first argument for a fixed k0, this holds iff y*/qA0 < qB*h(0, 

k0)/qA*.  Due to (4.9c) for baseline equilibrium, h(0, k0) º max {f¢(0), k0g¢(0)} = f¢(0).  

Substituting this into the previous inequality gives the result in Proposition 4.6(b). 
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Proof of Proposition 4.7 (long run; climate plus population). 

 First, we prove some preliminary results.  Define Lh > 0 to satisfy qA*h(Lh, k0) º 

qB*h(0, k0).  This Lh exists and is unique due to qA* > qB* and Proposition 4.1(d)-(f).  By 

the definition of SRE from D4.1 we have LB = 0 when 0 ≤ LA ≤ Lh and LB > 0 when LA > 

Lh.   

 Observe from (4.9c) in Proposition 4.5 that f¢(0) > k0g¢(0) holds.  Therefore, h(0, 

k0) = f¢(0) from Proposition 4.1(f).  Define xf0 > 0 by f¢(xf0) º k0g¢(0) as in Proposition 

4.1(a).  At sites of type A we have LAg = 0 when 0 ≤ LA ≤ xf0 and LAg > 0 when LA > xf0. 

 Denote the SRE population at type-A sites by LA(N), which is continuous and 

increasing with LA(0) = 0 and LA(¥) = ¥.  These properties follow from Proposition 4.2 

and the properties of the inverse function h defined in (4.3).  Denote the SRE population 

at type-B sites by LB(N). 

 The properties of LA(N) imply that there is a unique Nh > 0 such that Lh º LA(Nh).  

Furthermore, N ≤ Nh implies LA(N) ≤ Lh and LB(N) = 0, while N > Nh implies LA(N) > Lh 

and LB(N) > 0.  Similarly, there is a unique Nf > 0 such that xf0 º LA(Nf).  Moreover, N ≤ 

Nf implies LA(N) ≤ xf0 and LAg(N) = 0, while N > Nf implies LA(N) > xf0 and LAg(N) > 0. 

 Assume k0 < k as in Proposition 4.7(a).  We want to show that this implies Nh < 

Nf.  Suppose instead Nh ≥ Nf.  This implies LB(Nf) = 0 and LA(Nf) = Nf/l.  By the 

construction of Nh we have qA*h[LA(Nh), k0] = qB*f¢(0).  By Nf ≤ Nh, the fact that LA(N) 

is increasing, the fact that h is decreasing, and the earlier result LA(Nf) = Nf/l, we have 

qA*h(Nf/l, k0) ≥ qB*f¢(0).  Because gathering is not used at Nf, this reduces to 

qA*f(Nf/l)/(Nf/l) ≥ qB*f¢(0).  From (4.10) we have qA*f(LA)/LA º qB*f¢(0) and together 

these imply Nf/l ≤ LA.  However, by the construction of Nf, the definition of k in (4.10), 
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and k0 < k we have k0 = f¢(Nf/l)/g¢(0) < f¢(LA)/g¢(0) = k.   This implies Nf/l > LA, which 

contradicts the previous result Nf/l ≤ LA.  Therefore, k0 < k implies Nh < Nf.   

 Now assume k0 > k as in Proposition 4.7(b).  We want to show that this implies 

Nh > Nf.  Suppose instead Nh ≤ Nf.  By construction we have LB(Nh) = 0 and LA(Nh) = 

Nh/l.  Also, from the construction of Nh we have qA*h(Nh/l, k0) = qB*f¢(0).  Because 

gathering is not used at Nh due to Nh ≤ Nf, this reduces to qA*f(Nh/l)/(Nh/l) = qB*f¢(0).  

From (4.10) we have qA*f(LA)/LA º qB*f¢(0) and thus Nh/l = LA.  However, from the 

construction of Nf, the definition of k in (4.10), and k0 > k we have k0 = f¢[LA(Nf)]/g¢(0) > 

f¢(LA)/g¢(0) = k.  This implies that LA(Nf) < LA = Nh/l = LA(Nh).  This is a contradiction 

because Nh ≤ Nf and LA(N) is increasing.  Therefore, k0 > k implies Nh > Nf.  

  Finally, assume k0 = k as in Proposition 4.7(c).  We want to show that this implies 

Nh = Nf.  Suppose instead Nh > Nf.  Using this strict inequality in the argument from two 

paragraphs above, we can show that Nf/l < LA.  Modifying the rest of the argument using 

k0 = k, we can show that Nf/l = LA.  This is a contradiction.  Next, suppose instead Nh < 

Nf.  Using the argument from one paragraph above, we can show that LA(Nh) = Nh/l = 

LA.  Modifying the rest of the argument using k0 = k gives LA(Nf) = LA = LA(Nh).  This is 

a contradiction because Nh < Nf and LA(N) is an increasing function.  Therefore, k0 = k 

implies Nh = Nf.  

(a) Consider Proposition 4.7(a).  Assume k0 < k and thus Nh < Nf.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are three cases: 

(a)(i) Suppose N* ≤ Nh.  This implies LB* = 0 in LRE.  LB* = 0 holds iff qB*h(0, k0) ≤ 

y*.  Because h(0, k0) º max {f¢(0), k0g¢(0)} = f¢(0), this reduces to qB*f¢(0) ≤ y*.  
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(a)(ii) Suppose Nh < N* ≤ Nf.  The inequality Nh < N* implies LB* > 0 in LRE.  As 

above, this holds iff qB*f¢(0) > y*.  The inequality N* ≤ Nf implies LAg* = 0, 

which holds iff f¢(LA*) ≥ k0g¢(0), where LA* is defined by the LRE condition 

qA*h(LA*, k0) º y* stated in Proposition 4.7. 

(a)(iii) Suppose Nf < N*.  The fact that Nh < N* implies LB* > 0 in LRE.  As above, this 

holds iff qB*f¢(0) > y*.  Nf < N* implies LAg* > 0, which holds iff f¢(LA*) < 

k0g¢(0), where LA* is defined as in case (ii) above. 

These cases are mutually exclusive and exhaustive, so the converses also hold:  

(a)(i)  If qB*f¢(0) ≤ y* then N* ≤ Nh < Nf. 

(a)(ii) If qB*f¢(0) > y* and f¢(LA*) ≥ k0g¢(0) then Nh < N* ≤ Nf.  

(a)(iii) If qB*f¢(0) > y* and f¢(LA*) < k0g¢(0) then Nh < Nf < N*. 

The results in Proposition 4.7(a) are obtained as follows. 

(a)(i) If qB*f¢(0) ≤ y* then N* ≤ Nh < Nf.  We have N0 < N* because climate 

amelioration implies that the baseline VLRE in Proposition 4.5 has a lower 

regional population than the new LRE.  From A4.4 the regional population {Nt} is 

increasing and {Nt} approaches N* in the limit.   Thus, Nt < Nh < Nf for all t ≥ 0.  

It follows that type-B sites never become active and gathering is never used.  The 

sedentism rate remains at zero because LBt = 0 for all t ≥ 0. 

(a)(ii) If qB*f¢(0) > y* and f¢(LA*) ≥ k0g¢(0) then Nh < N* ≤ Nf.  It must be true that N0 ≤ 

Nh because type-B sites are not active in period t = 0 (by assumption the necessary 

condition for this to occur in Proposition 4.6(b) does not hold).  Again, the 

regional population {Nt} is increasing and {Nt} approaches N* in the limit.   

Thus, Nt < Nf for all t ≥ 0 and gathering is never used.  However, there is some T 
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> 0 such that Nt ≤ Nh for t = 0, 1 . . T-1 and Nt > Nh for t = T, T+1 . .  Therefore, 

the type-B sites are not active for t < T but are active for t ≥ T.   The sedentism 

rate has a positive limit S* = LB*/LA* < 1 because LA(N) and LB(N) are 

continuous, N approaches N*, and 0 < LB* < LA*. 

(a)(iii) If qB*f¢(0) > y* and f¢(LA*) < k0g¢(0) then Nh < Nf < N*. Again, N0 ≤ Nh, the 

regional population {Nt} is increasing, and {Nt} approaches N* in the limit.  As 

above there is some T > 0 such that Nt ≤ Nh for t = 0, 1 . . T-1 and Nt > Nh for t = 

T, T+1 . .  Therefore, the type-B sites are not active for t < T but are active for t ≥ 

T.  In addition, there is some T¢ ≥ T such that Nt ≤ Nf for t = 0, 1 . . T¢-1 and Nt > 

Nf for t = T¢, T¢+1 . .  Therefore, gathering is not used for t < T¢ but is used at sites 

of type A for t ≥ T¢.  The result for S* is obtained as in case (ii) above.  

(b) Consider Proposition 4.7(b).  Assume k0 > k and thus Nf < Nh.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are three cases: 

(b)(i) Suppose N* ≤ Nf.  This implies LAg* = 0 in LRE, which holds iff f¢(LA*) ≥ 

k0g¢(0). 

(b)(ii) Suppose Nf < N* ≤ Nh.  The inequality Nf < N* implies LAg* > 0 in LRE, which 

holds iff f¢(LA*) < k0g¢(0).  The inequality N* ≤ Nh implies LB* = 0 in LRE, 

which holds iff qB*h(0, k0) ≤ y*.  From h(0, k0) = f¢(0) this reduces to qB*f¢(0) ≤ 

y*.  

(b)(iii) Suppose Nh < N*.  This implies f¢(LA*) < k0g¢(0) as above.  Nh < N* implies LB* 

> 0 in LRE, which holds iff qB*f¢(0) > y*.  

These cases are mutually exclusive and exhaustive, so the converses also hold:  

(b)(i)  If f¢(LA*) ≥ k0g¢(0) then N* ≤ Nf < Nh. 
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(b)(ii) If f¢(LA*) < k0g¢(0) and qB*f¢(0) ≤ y* then Nf < N* ≤ Nh.  

(b)(iii) If f¢(LA*) < k0g¢(0) and qB*f¢(0) > y* then Nf < Nh < N*. 

The results in Proposition 4.7(b) are obtained as follows. 

(b)(i) If f¢(LA*) ≥ k0g¢(0) then N* ≤ Nf < Nh.  We have N0 < N* because climate 

amelioration implies that the baseline VLRE in Proposition 4.5 has a lower 

regional population than the new LRE.  From A4.4, regional population {Nt} is 

increasing and {Nt} approaches N* in the limit.   Thus, Nt < Nf < Nh for all t ≥ 0.  

It follows that type-B sites are never active and gathering is never used.  The 

sedentism rate remains at zero because LBt = 0 for all t ≥ 0. 

(b)(ii) If f¢(LA*) < k0g¢(0) and qB*f¢(0) ≤ y* then Nf < N* ≤ Nh.  It must be true that N0 ≤ 

Nf because gathering is not used in period t = 0 due to Proposition 4.6(a).  Again, 

the regional population {Nt} is increasing and {Nt} approaches N* in the limit.   

Thus, Nt < Nh for all t ≥ 0 and type-B sites are never active.  However, there is 

some T > 0 such that Nt ≤ Nf for t = 0, 1 . . T-1 and Nt > Nf for t = T, T+1 . .  Thus, 

gathering is not used for t < T but it is used at sites of type A for t ≥ T.  The 

sedentism rate remains at zero because LBt = 0 for all t ≥ 0. 

(b)(iii) If f¢(LA*) < k0g¢(0) and qB*f¢(0) > y* then Nf < Nh < N*.  Again, N0 ≤ Nf, the 

regional population {Nt} is increasing, and {Nt} approaches N* in the limit.  As 

above there is some T > 0 such that Nt ≤ Nf for t = 0, 1 . . T-1 and Nt > Nf for t = 

T, T+1 . . Thus, gathering is not used for t < T but it is used at sites of type A for t 

≥ T.  In addition, there is some T¢ ≥ T such that Nt ≤ Nh for t = 0, 1 . . T¢-1 and Nt 

> Nh for t = T¢, T¢+1 . .  Thus, type-B sites are not active for t < T¢ but are active 
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for t ≥ T¢.  The sedentism rate has a positive limit S* = LB*/LA* < 1 because 

LA(N) and LB(N) are continuous, N approaches N*, and 0 < LB* < LA*. 

(c) Consider Proposition 4.7(c).  Assume k0 = k and thus Nh = Nf.  Let N* be the LRE 

population for the new climate and the productivity k0.  There are two cases: 

(c)(i) Suppose N* ≤ Nf = Nh.  This implies LB* = 0 in LRE, which holds iff qB*f¢(0) ≤ 

y*.  It also implies that gathering does not occur at type-A sites in LRE, which is 

true iff f¢(LA*) ≥ k0g¢(0). 

(c)(ii) Suppose Nf = Nh < N*.  This implies LB* > 0 in LRE, which holds iff qB*f¢(0) > 

y*.  It also implies that gathering does occur at type-A sites in LRE, which is true 

iff f¢(LA*) < k0g¢(0). 

These cases are mutually exclusive and exhaustive, so the converses also hold: 

(c)(i) If qB*f¢(0) ≤ y* and f¢(LA*) ≥ k0g¢(0) then N* ≤ Nf = Nh. 

(c)(ii) If qB*f¢(0) > y* and f¢(LA*) < k0g¢(0) then Nf = Nh < N*. 

The results in Proposition 4.7(c) are obtained as follows. 

(c)(i) If qB*f¢(0) ≤ y* and f¢(LA*) ≥ k0g¢(0) then N* ≤ Nf = Nh.  We have N0 < N* due to 

climate amelioration.  As in other cases, the regional population {Nt} is increasing 

and approaches N* in the limit.  Thus, Nt < Nf = Nh for all t ≥ 0.  It follows that 

type-B sites are never active and gathering is never used.  The sedentism rate 

remains at zero because LBt = 0 for all t ≥ 0. 

(c)(ii) If qB*f¢(0) > y* and f¢(LA*) < k0g¢(0) then Nf = Nh < N*.  It must be true that N0 ≤ 

Nf = Nh because gathering is not used in period t = 0 due to Proposition 4.6(a).  

The path {Nt} has the same properties as in case (c)(i) above.  Thus, there is some 

T > 0 such that Nt ≤ Nf = Nh for t = 0, 1 . . T-1 and Nt > Nf = Nh for t = T, T+1 . .  
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It follows that type-B sites are not active and gathering is not used for t < T, but 

type-B sites become active and gathering is used at type-A sites for t ≥ T.  The 

sedentism rate has a positive limit S* = LB*/LA* < 1 because LA(N) and LB(N) are 

continuous, N approaches N*, and 0 < LB* < LA*. 
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 Proof of Proposition 4.8 (very long run; climate plus population and technology). 

 Because gathering never shuts down after it begins, the only possibility for VLRE 

involves gathering productivity at the level k*.  The conditions for LRE require that sites 

of type B have LB* = 0 if qB*h(0, k*) ≤ y* and LB* > 0 if qB*h(0, k*) > y*. 

 In cases (a)(iii), (b)(iii), and c(ii) from Proposition 4.7, we have qB*f¢(0) > y*.  By 

the definition in Proposition 4.1(f), h(0, k*) º max {f¢(0), k*g¢(0)} ≥ f¢(0).  Therefore, in 

all of these cases we have qB*h(0, k*) > y*.  This implies LB* > 0 in the new VLRE.        

 In case (b)(ii) from Proposition 4.7, we have qB*f¢(0) ≤ y*.  From the definition of 

h(0, k*), the inequality qB*h(0, k*) > y* holds iff qB*k*g¢(0)  > y*.  This implies LB* > 0 

iff the latter inequality holds.    
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Proof of Proposition 4.9 (persistence of mobile activities). 

 The baseline VLRE in Proposition 4.5 has qA0f¢(0) > y* due to (4.9a).  Suppose 

only gathering is used at the type-A sites in the new VLRE.  This implies f¢(0) ≤ kg¢(LA*) 

where LA* is the local population at type-A sites and k is the gathering productivity in the 

new VLRE.  It is unimportant whether k < k* or k = k*.  If only gathering is used at the 

type-A sites, then LRE implies qA*kg(LA*)/LA*= y*.  Combining these results with the 

fact that the average product of gathering exceeds the marginal product, we obtain 

 
  y* < qA0f¢(0) < qA*f¢(0) ≤ qA*kg¢(LA*) <  qA* kg(LA*)/LA* = y*    

 
This is a contradiction.  It follows that type-A sites must use both hunting and gathering 

in the new VLRE. 
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Proof of Proposition 5.1 (optimal time allocation). 

 A solution [nf(n, c, s), ng(n, c, s)] exists because the feasible set is non-empty and 

compact, and the objective function is continuous.  The optimal allocation is unique due 

to convexity of the feasible set and strict concavity of the objective function.  Continuity 

of the solution and of H(n, c, s) follows from the theorem of the maximum. 

 To establish the strict concavity of H(n, c, s) in n, fix (c, s) > 0.  Choose any n¢ ≥ 0 

and n¢¢ ≥ 0 with n¢ ≠ n¢¢.  Let (nf¢, ng¢) be optimal for n¢ and let (nf¢¢, ng¢¢) be optimal for 

n¢¢.  Choose some arbitrary µ Î (0, 1).  Define nfμ º µnf¢ + (1-µ)nf¢¢ and ngμ º µng¢ + (1-

µ)ng¢¢.  The allocation (nfμ, ngμ) is feasible when the population of the site is nμ º µn¢ + (1-

µ)n¢¢.  This implies  

 H(nμ, c, s) ≥ F(nfμ, c, s) + G(ngμ, c, s)  

   = F[µnf¢ + (1-µ)nf¢¢, c, s] + G[µng¢ + (1-µ)ng¢¢, c, s] 

    > µF(nf¢, c, s) + (1-µ)F(nf¢¢, c, s) + µG(ng¢, c, s) + (1-µ)G(ng¢¢, c, s)  

   = µH(n¢, c, s) + (1-µ)H(n¢¢, c, s) 

where the weak inequality follows from the fact that H is a maximum; the first equality 

follows from the definitions of nfμ and ngμ; the strict inequality follows from the fact that 

F and G are both strictly concave and either nf¢ ≠ nf¢¢, ng¢ ≠ ng¢¢, or both due to n¢ ≠ n¢¢; 

and the second equality follows from the optimality of (nf¢, ng¢) for n¢ and the optimality 

of (nf¢¢, ng¢¢) for n¢¢.  This shows that H(n, c, s) is strictly concave in n for fixed (c, s) > 0. 

 Finally, we want to show that nf(n, c, s) and ng(n, c, s) are differentiable.  From 

the differentiability of F and G, this will show that H(n, c, s) is also differentiable.  By 

strict concavity, the first order conditions are necessary and sufficient for a solution.  As 

discussed in the text in connection with A5.2, when 0 ≤ n ≤ na(c, s) with na(c, s) defined 
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as in (5.2), it is optimal to have nf = n and ng = 0 in (5.1).  If n < na(c, s), we have Fn(n, c, 

s) > Gn(0, c, s) so nf(n, c, s) = n and ng(n, c, s) = 0, which is clearly differentiable.  When 

n > na(c, s), the first order conditions require Fn(nf, c, s) = Gn(ng, c, s) and nf + ng = n with 

nf > 0 and ng > 0.  The implicit function theorem then establishes the differentiability of 

the solution in (5.1).  It follows that the solution and H are differentiable except possibly 

at n = na(c, s).  Both are continuous at this boundary by the theorem of the maximum. 
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Proof of Lemma 5.1. 

(a) Fix (c, s) > 0.  From A5.2 and A5.3, there is a threshold na > 0 defined by fn(na) º 

kgn(0) that is independent of (c, s).  As in the proof of Proposition 5.1, 0 ≤ n ≤ na implies 

that it is optimal to choose nf = n and ng = 0.  On the interval 0 < n ≤ na we have y(n, c, s) 

= A(c, s)f(n)/n where A(c, s) > 0 is a constant.   From the strict concavity of f(n) we have 

f(n)/n > f¢(n) for all n > 0.  A5.2 and A5.3 imply lim n®0 f¢(n) = +¥ so lim n®0 y(n, c, s) = 

+¥. 

(b) For all n > na the solution in (5.1) satisfies the first order conditions f¢(nf) = kg¢(ng) 

with nf + ng = n and nf > 0, ng > 0.  The first order conditions imply that nf and ng are both 

increasing functions of n.  If there is a finite upper bound for nf as n ® ¥ then there must 

be a strictly positive lower bound for f¢(nf).  But then ng ® ¥ as n ® ¥ implies kg¢(ng) ® 

0 as n ® ¥, contradicting the first order conditions.  A similar argument rules out an 

upper bound for ng.  Therefore, both nf ® ¥ and ng ® ¥ as n ® ¥. 

 The ratio f(n)/n is decreasing from strict concavity.  We want to show that f(n)/n 

® 0 as n ® ¥.  Suppose instead there is a positive lower bound e > 0 such that f(n)/n > e 

for all n ≥ 0.  By the strict concavity, for any arbitrary n0 > 0 we must have f(n) ≤ f(n0) + 

f¢(n0)(n - n0) for all n ≥ 0.  Therefore, we have en < f(n) ≤ f(n0) + f¢(n0)(n - n0) for all n ≥ 

0.  But according to A5.2 and A5.3 we can choose a fixed n0 large enough that f¢(n0) < e.  

This gives en > f(n0) + f¢(n0)(n - n0) if n is sufficiently large.  The resulting contradiction 

shows that there is no lower bound e > 0 and therefore f(n)/n ® 0 as n ® ¥.  The same 

argument shows that g(n)/n ® 0 as n ® ¥.  We have y(n, c, s) = A(c, s)[f(nf) + kg(ng)]/n 

≤ A(c, s)[f(n) + kg(n)]/n.  Together these results imply lim n®¥ y(n, c, s) = 0. 
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Proof of Proposition 5.2 (short-run equilibrium). 

(a) We first show that y(n, c, s) º H(n, c, s)/n is decreasing in n for fixed (c, s) > 0.  

Recall from Proposition 5.1 that H(n, c, s) is strictly concave in n for any fixed (c, s) > 0.  

Using H(0, c, s) = 0, strict concavity implies H(µn, c, s) > µH(n, c, s) for all n > 0 and µ 

Î (0, 1).  This gives H(µn, c, s)/µn > H(n, c, s)/n for all n > 0 and µ Î (0, 1).  Thus, y(n, 

c, s) is decreasing in n.  By Lemma 5.1, lim n®0 y(n, c, s) = +¥ and lim n®¥ y(n, c, s) = 0. 

 These results imply that for fixed (c, s) > 0, n(y, c, s) is decreasing in y with lim 

y®0 n(y, c, s) = +¥ and lim y®¥ n(y, c, s) = 0.  Drop the time subscripts in (5.4) and write 

the SRE condition as N = ò01 n(y, c, s)q(s)ds where q(s) > 0 for all s Î [0, 1].  The integral 

is a continuous and decreasing function of y, goes to infinity as y ® 0, and goes to zero 

as y ®¥.  It follows that for any N > 0 and c > 0, there is a unique y = z(N, c) such that N 

º ò01 n[z(N, c), c, s]q(s)ds.  It also follows that z(N, c) is a decreasing function of N.  The 

integral is increasing in c, so for a fixed N > 0, z(N, c) is increasing in c. 

(b) Again dropping the time subscripts, we need to show that n[z(N, c), c, s] is an 

increasing function of s for any fixed (N, c) > 0.  It is sufficient to show that n(y, c, s) is 

increasing in s for fixed (y, c) > 0.  By definition y(n, c, s) º H(n, c, s)/n.  For a fixed n > 

0, the right-hand side is increasing in s because the functions F(nf, c, s) and G(ng, c, s) are 

increasing in s when all inputs are positive.  Also, for a fixed s > 0, the right-hand side is 

decreasing in n due to previous results.  Because we are holding y fixed, an increase in s 

implies an increase in n.  Hence, n(y, c, s) is increasing in s. 
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Proof of Proposition 5.3 (climate and migration in short-run equilibrium). 

 Let c0 > 0 be the initial climate and let c1 > c0 be the new climate.  The associated 

per capita food incomes are y0 and y1 where from the short run equilibrium condition 

(5.4) these are the unique solutions to N = ò01 n(y0, c0, s)q(s)ds = ò01 n(y1, c1, s)q(s)ds.  We 

will show that n[z(N, c0), c0, 1] > n[z(N, c1), c1, 1] or simply n(y0, c0, 1) > n(y1, c1, 1). 

 From A5.3 we have F(nf, c, s) = A(c, s)f(nf) and G(ng, c, s) = kA(c, s)g(ng).  This 

gives y(n, c, s) = A(c, s)M(n) where M(n) º (1/n){max f(nf) + kg(ng) subject to nf ≥ 0, ng 

≥ 0, and nf + ng = n}.  Because n(y, c, s) is the inverse of y(n, c, s) for fixed (c, s) > 0, we 

have y0 º A(c0, 1)M[n(y0, c0, 1)] and y1 º A(c1,1)M[n(y1, c1, 1)].  Because M is 

decreasing we have n(y0, c0, 1) > n(y1, c1, 1) iff M[n(y0, c0, 1)] < M[n(y1, c1, 1)], which in 

turn holds iff y0/A(c0, 1) < y1/A(c1, 1).   

 Write y1 º z(N, c1) º qz(N, c0) º qy0 where q > 1 because c1 > c0 and the function 

z is increasing in c for fixed N > 0.  Suppose A(c1, s)/A(c0, s) is decreasing in s (this will 

be proven below).  We will show that this condition implies A(c1, 1) < qA(c0, 1), which 

gives y0/A(c0, 1) < y1/A(c1, 1) and hence the desired result n(y0, c0, 1) > n(y1, c1, 1). 

 Suppose instead A(c1, s)/A(c0, s) is decreasing in s but A(c1, 1) ≥ qA(c0, 1).  This 

gives A(c1, s)/A(c0, s) > q for all s < 1 and therefore y0/A(c0, s) > y1/A(c1, s ) for all s < 1.  

It follows that y0/A(c0, s) = M[n(y0, c0, s)] > M[n(y1, c1, s)] = y1/A(c1 s) for all s < 1, 

which implies n(y0, c0, s) < n(y1, c1, s) for all s < 1.  But then the short run equilibrium 

condition (5.4) implies N = ò01 n(y0, c0, s)q(s)ds < ò01 n(y1, c1, s)q(s)ds = N.  This 

contradiction shows that if A(c1, s)/A(c0, s) is decreasing in s then n(y0, c0, 1) > n(y1, c1, 

1) as required. 
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 Thus, it suffices to show that A(c1, s)/A(c0, s) is decreasing in s.  This is true if (i) 

A(c0, s)/As(c0, s) < A(c1, s)/As(c1, s) for all s, where subscripts indicate differentiation.  In 

turn, (i) is true if (ii) A(c, s)/As(c, s) is increasing in c at each s.  Differentiating with 

respect to c, (ii) is true if (iii) Ac(c, s)As(c, s) > A(c, s)Acs(c, s) for all (c, s).  In the rest of 

the proof we show that (iii) holds if A(c, s) has constant returns to scale and an elasticity 

of substitution s > 1, as assumed in A5.4. 

 Consider the expenditure minimization problem 

  min pss + pcc  subject to A(c, s) = A0   where ps > 0, pc > 0. 

Define p º ps/pc.  From the first order conditions we have the identities pAc[c(p), s(p)] º 

As[c(p), s(p)] and A[c(p), s(p)] º A0.  From constant returns, the marginal products Ac 

and As are homogeneous of degree zero.  This gives Acc = -Acss/c and Ass = -Acsc/s.  The 

second derivatives Acc and Ass are negative from A5.1, so the cross partial Acs is positive.   

 The elasticity of substitution is s = -d[s(p)/c(p)]/dp •p/[s(p)/c(p)] = - [(s¢/s) – 

(c¢/c)]p.  Differentiating the identities that define s(p) and c(p) yields c¢(p) = Ac/[2Acs – 

(AssAc/As) – (AccAs/Ac)] > 0 and s¢(p) = -Acc¢(p)/As < 0.  It follows that s > 0.  

 Substituting these results into s yields s > 1 iff Ac/s + As/c > 2Acs – (AssAc/As) – 

(AccAs/Ac).  Substituting Acc = -Acss/c and Ass = -Acsc/s in this inequality shows that s > 

1 iff AcAs > (cAc + sAs)Acs = AAcs where the equality follows from constant returns.  

This establishes condition (iii) in the preceding paragraph and completes the proof. 
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Proof of Proposition 5.4 (long-run equilibrium). 

 For the given c > 0, write N*(c) º ò01 n(y*, c, s)q(s)ds.  From Lemma 5.1, the fact 

that y* is positive and finite in A5.5, and c > 0, we have n(y*, c, s) > 0 for all s > 0.  

Because q(s) > 0 for all s, we have N*(c) > 0.  Recall from Proposition 5.2(a) that there is 

a unique y = z(N, c) such that (5.4) has N º ò01 n(y, c, s)q(s)ds.  It follows that y* = 

z[N*(c), c] is the unique SRE food per capita for the climate c and the population N*(c).  

Substituting this into D5.2 gives r[z(N*(c), c)] = r(y*) = 1, so N*(c) > 0 is a LRE 

population for c.  To show that this is the unique non-null LRE for c, suppose N¢ ≠ N*(c) 

is another non-null LRE population for the same value of c.   From D5.2 we have r[z(N¢, 

c)] = 1.  This implies that z(N¢, c) = y* = z[N*(c), c].  But from Proposition 5.2(a), z(N, 

c) is decreasing in N for a fixed c > 0, so these equalities contradict N¢ ≠ N*(c).  Hence, 

N*(c) is the unique non-null LRE population.  N*(c) is increasing in c because y* is a 

constant and n(y*, c, s) is increasing in c for all s > 0.   
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Proof of Lemma 6.1.   

 Note that 0 < sa(x) < sb(x) for all x > 0.   

(i)  Suppose L(s, x) < d.  Part (a) in D6.1 implies L(s, x) = (s/x)1/(1-α) < d and thus s < 

sa(x).  

(ii) Suppose L(s, x) = d.  The first order condition for (b)(i) in D6.1 implies asdα-1 ≤ x 

and thus s ≤ sb(x).  Part (b)(ii) in D6.1 implies sdα - xd ≥ 0, and thus sa(x) ≤ s.  

(iii) Suppose L(s, x) > d.  The first order condition for (b)(i) in D6.1 implies L(s, x) = 

(as/x)1/(1-α) > d and thus sb(x) < s.  

(iv) Suppose s < sa(x).  If L(s, x) = d then result (ii) implies sa(x) ≤ s, which is a 

contradiction.  If L(s, x) > d then result (iii) implies sa(x) < sb(x) < s, which is a 

contradiction.  Thus result (i) applies and (a) in Lemma 6.1 is true. 

(v) Suppose sa(x) ≤ s ≤ sb(x).  If L(s, x) < d then result (i) implies s < sa(x), which is a 

contradiction.  If L(s, x) > d then result (iii) implies s > sb(x), which is a 

contradiction.  Thus result (ii) applies and (b) in Lemma 6.1 is true. 

(vi) Suppose sb(x) < s.  If L(s, x) < d then result (i) implies s < sa(x) < sb(x), which is a 

contradiction.  If L(s, x) = d then result (ii) implies s ≤ sb(x) which is a 

contradiction.  Thus result (iii) applies and (c) in Lemma 6.1 is true. 
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Proof of Lemma 6.2.   

 The "only if" statement follows from the definition of SRE in D6.1.  Here we 

assume N = ò01 L(s, x)ds and prove the "if" statement.  Suppose in what follows 

that conditions (a), (b), and (c) from Lemma 6.1 are all satisfied.   

(a) If L(s, x) < d, Lemma 6.1(a) gives L(s, x) = (s/x)1/(1-α).  This gives x = sL(s, x)α-1.  

Thus part (a) in the definition of SRE from D6.1 is satisfied for the given x. 

(b) If L(s, x) = d, Lemma 6.1(b) gives sa(x) ≤ s ≤ sb(x).  The latter inequality gives 

asdα-1 ≤ x, which is the first order condition for L = d to be a solution in part (b)(i) 

of the definition of SRE from D6.1.  This is sufficient for a maximum due to the 

concavity of the objective function.  The former inequality gives sdα - xd ≥ 0, so 

r(s) ≥ 0 holds.  Thus, (b)(ii) in the definition of SRE from D6.1 is also satisfied for 

the given x. 

(c) If L(s, x) > d, Lemma 6.1(c) implies L(s, x) = (as/x)1/(1-α) and sb(x) < s.  The latter 

inequality implies that L(s, x) obeys the first order condition to be a solution in 

part (b)(i) of the definition of SRE from D6.1.  This is sufficient for a maximum 

due to the concavity of the objective function.  Direct computation shows that r(s) 

≥ 0 also holds.  Thus, (b)(ii) in the definition of SRE from D6.1 is also satisfied 

for the given x.  
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Proof of Proposition 6.1 (short-run equilibrium).   

 For parts (a), (b), and (c), we first prove the implications from x to D(x).  The 

implications from N to x will be established at the end of the proof.   

(a) xa < x implies 1 < sa(x).  All sites are open.  The result for D(x) is obtained by 

integrating the density from Lemma 6.1(a) on [0, 1]. 

(b) xb ≤ x ≤ xa implies sa(x) ≤ 1 ≤ sb(x).  All sites are either open, or closed but 

unstratified.  The result for D(x) is obtained by integrating the density from 

Lemma 6.1(a) on [0, sa(x)] and the constant d from Lemma 6.1(b) on [sa(x), 1]. 

(c) x < xb implies sb(x) < 1.  Some sites are open, some are closed but unstratified, 

and some are stratified.  The result for D(x) is obtained by integrating the density 

from Lemma 6.1(a) on [0, sa(x)], the constant d from Lemma 6.1(b) on [sa(x), 

sb(x)], and the density from Lemma 6.1(c) on [sb(x), 1]. 

(d) Continuity of the derivative at xa and xb can be verified by direct computations.  

Continuity of the derivative elsewhere is obvious.  It can also be shown through 

computations that the derivative is always negative.  The limiting values of D(x) 

follow from the results in parts (a) and (c). 

(e) The existence of a unique x > 0 such that D(x) = N follows from N > 0, the limits 

of D(x), the continuity of D(x), and the fact that D(x) is decreasing.  The fact that 

this x and the associated density L(×, x) from Lemma 6.1 form a SRE follows 

from Lemma 6.2.  The implicit function theorem shows that the equilibrium wage 

x(N) is continuously differentiable with x¢(N) < 0.  The limit results for x(N) 

follow from the limit results for D(x) in part (d). 
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Using the result for D(x) in part (b), we have Na = D(xa) and Nb = D(xb), or equivalently 

xa = x(Na) and xb = x(Nb).  Because x(N) is decreasing, N < Na implies xa < x(N); Na ≤ N 

≤ Nb implies xb ≤ x(N) ≤ xa; and Nb < N implies x(N) < xb.  This completes the proof for 

parts (a), (b), and (c) above. 
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Proof of Proposition 6.2 (aggregate production function). 

(a) From Proposition 6.1, N < Na implies xa < x.  This gives 1 < sa(x) so all sites are 

open.  The result for f(x) is obtained using the density L(s, x) = (s/x)1/(1-α) from 

Lemma 6.1(a) on [0, 1]. 

(b) From Proposition 6.1, Na ≤ N ≤ Nb implies xb ≤ x ≤ xa.  This gives sa(x) ≤ 1 ≤ 

sb(x) so that all sites are either open, or closed but unstratified.  The result for f(x) 

is obtained using the density L(s, x) = (s/x)1/(1-α) from Lemma 6.1(a) on [0, sa(x)) 

and L(s, x) = d from Lemma 6.1(b) on [sa(x), 1]. 

(c) From Proposition 6.1, Nb < N implies x < xb.  This gives sb(x) < 1 so that some 

sites are open, some sites are closed but unstratified, and some sites are stratified.  

The result for f(x) is obtained using the density L(s, x) = (s/x)1/(1-α) from Lemma 

6.1(a) on [0, sa(x)); L(s, x) = d from Lemma 6.1(b) on [sa(x), sb(x)]; and L(s, x) = 

(as/x)1/(1-α) from Lemma 6.1(c) on (sb(x), 1]. 

Continuity of f¢(x) at xa and xb can be verified by computation.  Continuity of f¢(x) for all 

other x > 0 is obvious.  It can be shown by computation that f¢(x) < 0 for all x > 0.  Part 

(e) of Proposition 6.1 ensures that x¢(N) is continuous and negative for all N > 0.  

Together these results imply that Y¢(N) is continuous and positive for all N > 0. 
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Proof of Corollary to Proposition 6.2. 

 (a) From Proposition 6.1(a) and N = D(x) we have x(N) = (Q/N)1/(1-α).  Using the 

solution for f(x) from Proposition 6.2(a) along with (6.3) gives the result. 

(b) From Proposition 6.1(b) and N = D(x) we have x(N) = (d-N)(2-a)dα-2.  Using the 

solution for f(x) from Proposition 6.2(b) along with (6.3) gives the result. 

(c) Consider N > Nb so Proposition 6.2(c) applies.  We have Y¢(N) = f¢[x(N)]x¢(N) 

and Y¢¢(N) = f¢¢[x(N)][x¢(N)]2 + f¢[x(N)]x¢¢(N).  From the identity N º D[x(N)],  

   x¢(N) = 1/D¢[x(N)]  and  x¢¢(N) = -D¢¢[x(N)]/{D¢[x(N)]}3.   

 Substituting these results into Y¢¢(N) gives  

   Y¢¢(N) = -{f¢[x(N)]D¢¢[x(N)] - f¢¢[x(N)]D¢[x(N)]} / [D¢(x(N))]3.   

 Since - 1/[D¢(x(N))]3 > 0 from Proposition 6.1(d), the sign of Y¢¢(N) is the same as 

the sign of f¢[x(N)]D¢¢[x(N)] - f¢¢[x(N)]D¢[x(N)].  It therefore suffices to study the 

sign of f¢(x)D¢¢(x) - f¢¢(x)D¢(x) on the interval x < xb.  Using Propositions 6.1(c) 

and 6.2(c), some algebra shows that this has the same sign as the quadratic Av2 + 

Bv + C where v º x1/Q, A º -d2(2-α)(1+a)/a2, B º d2-αaα/(1-α)(1-a)-2(2+a-2a2), and 

C º  -a2/(1-α)(1-a)-2.  The quadratic is negative at v = 0 and positive at vb º (xb)1/Q.  

Since the quadratic is either rising throughout [0, vb) or has an interior maximum 

on this interval, there is a unique vc Î (0, vb) at which the quadratic is zero, with a 

negative sign for all v Î (0, vc) and a positive sign for all v Î (vc, vb).  Thus, there 

is a unique xc = (vc)Q Î (0, xb) such that f¢(x)D¢¢(x) - f¢¢(x)D¢(x) < 0 for x Î (0, 

xc), = 0 for x = xc, and > 0 for x Î (xc, xb).  Finally, this implies that there is a 
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unique Nc = N(xc) > Nb such that Y¢¢(N) > 0 for N Î (Nb, Nc), = 0 for N = Nc, and 

< 0 for N > Nc. 

(d) Continuous differentiability of Y(N)/N follows from continuous differentiability 

of Y(N), which was established in Proposition 6.2.  We want to show that Y(N)/N 

is globally decreasing.  This can be done by direct computation for 0 < N ≤ Nb 

using the results in parts (a) and (b) of the Corollary.  Suppose N > Nb, which 

implies x < xb and v < vb in the notation used in the proof of (c) above.  We will 

show that Y¢(N) - Y(N)/N < 0 for all N > Nb.  Using (6.3), the SRE identity N º 

D[x(N)], and the implicit function theorem, we obtain Y¢(N) - Y(N)/N = 

f¢[x(N)]/D¢[x(N)] - f[x(N)]/D[x(N)].  Because D¢[x(N)] < 0 from Proposition 6.1, 

this expression is opposite in sign to f¢[x(N)]D[x(N)] - f[x(N)]D¢[x(N)].  Thus, it 

suffices to show that the latter expression is positive for all N > Nb, or 

equivalently that f¢(x)D(x) - f(x)D¢(x) > 0 for all x < xb.  Some algebra shows that 

this is true iff av2 + bv + c > 0 for all v < vb where v º x1/Q, a º d2(2-α)(1+a)/2a1/Q, 

b º d2-α(1/2 + a - 1/a), and c º  a1/(1-α).  Since a > 0, this quadratic has a minimum 

value at vmin = -b/2a.  There are three cases: (i) vmin ≤ 0; (ii) 0 < vmin ≤ vb; and (iii) 

vb < vmin.  In case (i), the quadratic is equal to c > 0 at v = 0 and positive for all v 

> 0.  This yields the result.  In case (ii), it suffices to show that the value of the 

quadratic is positive at vmin.  This is true from vmin ≤ vb.  In case (iii), the quadratic 

is positive at vb, which implies that it is positive on [0, vb].  This establishes that 

Y(N)/N is decreasing as claimed.  The result lim N®0 Y(N)/N = ¥ follows from 

part (a) of the Corollary.  To show that lim N®¥
 Y(N)/N = 0, note that Y(N)/N = 

f[x(N)]/D[x(N)] where N ® ¥ implies x ® 0 from Proposition 6.1.  Computing 
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this ratio as a function of x using Proposition 6.1(c) for the denominator and 

Proposition 6.2(c) for the numerator gives the desired result.  
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Proof of Proposition 6.3 (long-run equilibrium). 

(a) The SRE conditions in D6.1 are built into the definition of the aggregate 

production function Y(N; q) from (6.2).  It suffices to show that for a given 

productivity q > 0, there is a unique N(q) > 0 such that Y[N(q); q]/N(q) = 1/r.  

This follows from the results in part (d) of the Corollary to Proposition 6.2. 

(b) The LRE condition in (a) above and the implicit function theorem imply N¢(q) = 

Yq[N(q), q] / {Y[N(q); q]/N(q) - YN[N(q); q]} > 0 where the subscripts indicate 

partial derivatives.  The inequality holds because the numerator is positive due to 

Proposition 6.2, and the denominator is positive due to part (d) of the Corollary.  

Continuity of N¢(q) follows from results in Proposition 6.2 and the Corollary.  For 

the limits, note that (6.3) in the text and the definition of LRE together imply 1/qr 

= ò01 sL(s, x)α ds / D(x).  Consider q ® 0, which implies that the left-hand side ® 

¥.  Using Lemma 6.1 and Proposition 6.1, the right-hand side ® ¥ iff x ® ¥.  

Thus, q ® 0 implies x ® ¥.  From Proposition 6.1(e), this implies N ® 0.  This 

establishes lim	q®0	N(q)	=	0.		The	other	limit	result	is	obtained	through	similar	

reasoning.    

(c) From Proposition 6.1, Na and Nb are positive constants that do not depend on q. 

Proposition 6.3(b) implies that there are unique productivity levels such that N(qa) 

= Na and N(qb) = Nb, with 0 < qa < qb because 0 < Na < Nb.   The first sentences of 

(i), (ii), and (iii) are immediate from the fact that N(q) is increasing.  The second 

sentence of (i) results from the fact that N < Na implies xa < x due to Proposition 

6.1, and thus 1 < sa(x) in Lemma 6.1(a).  The second and third sentences of (ii) 

result from the fact that Na ≤ N ≤ Nb implies xb ≤ x ≤ xa due to Proposition 6.1, 
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and thus 0 < sa(x) ≤ 1 ≤ sb(x) in Lemma 6.1(b).   The second and third sentences 

of (iii) result from the fact that Nb < N implies x < xb due to Proposition 6.1, and 

thus 0 < sa(x) < sb(x) < 1 in Lemma 6.1(c).  With minor notational abuse, define 

sa(q) º sa[x(N(q))] and sb(q) º sb[x(N(q))] as in Lemma 6.1.  These functions are 

continuously differentiable because N(q) and x(N) are continuously differentiable.  

They are decreasing because N(q) is increasing and x(N) is decreasing.  The limit 

results follow from the limit results in (b) above, the limit results in Proposition 

6.1(e), and the definitions of sa(x) and sb(x). 

(d) Continuous differentiability of w(q) =  qx[N(q)] follows from the continuous 

differentiability of x(N) and N(q).  When q ≤ qa we have N ≤ Na, xa ≤ x, and 1 ≤ 

sa.  All agents at all sites receive the food income w (including at s = 1 if 1 = sa 

because the marginal site has zero rent).  Thus, LRE implies w = Y(N; q)/N = 1/r.  

For the rest of the proof we assume qa < q so that Na < N(q).  We need to show 

that w¢(q) = x[N(q)] + qx¢[N(q)]N¢(q) < 0.  Upon substituting the result from part 

(b) above for N¢(q), differentiating (6.3) to obtain the marginal product YN(N; q), 

using the linearity of Y(N; q) as a function of q in Proposition 6.2 to eliminate the 

partial derivative Yq(N; q), and using the implicit function theorem to obtain x¢(N) 

= 1/D¢[x(N)] from Proposition 6.1(e), a necessary and sufficient condition for the 

desired result is f(x)[xD¢(x) + D(x)] > xf¢(x)D(x) for all relevant values of x.  In 

the case where qa < q ≤ qb we have Na < N ≤ Nb and xb ≤ x < xa.  Differentiating 

the functions from Propositions 6.1(b) and 6.2(b) yields an inequality involving a 

quadratic in x, which is satisfied for xb ≤ x < xa.  The other case is qb < q, where 
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we have Nb < N and x < xb.  Differentiating the functions from Propositions 6.1(c) 

and 6.2(c) yields an inequality that does not involve x and holds whenever a < 1. 
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Proof of Proposition 6.4 (inequality).   

 Using (6.4), we define za and zb so that sa = s(za) and sb = s(zb).   

(a) From (6.7), y1(z) > y2(z) for all 0 < z < 1 implies G1 < G2, so it suffices to 

establish the first claim.  We begin by considering the derivative y¢(z) of the Lorenz 

curve y(z) in (6.6).  The fraction of agents in the regional population who have the lowest 

income w is za º (DO + DC)/N where DO is the number of agents at open sites and DC is 

the number of commoner agents at stratified sites.  The fraction of regional income going 

to this set of agents is ya º w(DO + DC)/Y.  Thus, for z Î [0, za] we have y¢(z) = ya/za = 

wN/Y and the Lorenz curve is linear. 

 For z Î [za, 1] the derivative is y¢(z) = (N/Y)[w + r(s(z))/d] from (6.4), (6.5), and 

(6.6).  The first derivative is continuous at za because s(za) = sa and r(sa) = 0.  For z Î [za, 

zb] the optimal labor input is L(s) = d by Lemma 6.1(b), yielding y¢(z) = (qN/Y)dα-1s(z).  

From (6.4), this is linear and increasing in z.  For (za, zb] we have y¢¢(z) = (qN2/Y)dα-2 > 0 

which is independent of z so that y(z) is quadratic on this interval.  The second derivative 

y¢¢(z) is discontinuous at za, where it jumps from zero to a positive number.   

 Whenever the interval (zb, 1] is non-empty, the envelope theorem can be used to 

disregard effects operating through the optimal labor input L(s), and this yields y¢¢(z) = 

(qN2/Yd2)L[s(z)]α > 0.  This is larger than the second derivative on the quadratic interval 

(za, zb] because L[s(z)] > d from Lemma 6.1(c), and it is increasing in z because s(z) and 

L(s) are both increasing.  The first derivative y¢(z) is continuous at zb because s(z) and 

r(s) are both continuous.  Likewise, y¢¢(z) is continuous at zb because L(s) is continuous.  

 To compare the two Lorenz curves y1(z) and y2(z) from Proposition 6.4, we need 

to know how y¢(z) and y¢¢(z) respond to changes in N.  We first show that the linear part 
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of the Lorenz curve becomes flatter when N increases.  For N Î (Na, Nb] the ratio wN/Y 

can be expressed in terms of x using Propositions 6.1(b) and 6.2(b).  Differentiating with 

respect to x shows that wN/Y is increasing in x when a certain quadratic expression 

involving x is positive.  This requirement is satisfied whenever xb ≤ x < xa, which follows 

from N Î (Na, Nb].  Since wN/Y is increasing in x, it is decreasing in N.  For N > Nb, the 

ratio wN/Y can be expressed in terms of x using Propositions 6.1(c) and 6.2(c).  Algebra 

and differentiation show that the ratio is increasing in x whenever a < 1.  Thus, the ratio 

is again decreasing in N.  These results prove that y1¢(z) > y2¢(z) whenever both curves 

are linear; that is, for the non-degenerate interval 0 ≤ z ≤ min {z1a, z2a}. 

 Now consider the slope of the Lorenz curve at z = 1: that is, y¢(1).  When N Î 

(Na, Nb] we have L(1) = d and y¢(1) = (qN/Y)dα-1.  The productivity parameter q cancels 

with q in the output expression f(x) from Proposition 6.2(b), so this parameter does not 

affect the slope y¢(1).  Part (d) of the Corollary from Section 6.6 shows that Y/N is 

decreasing in N.  Therefore, the ratio in parentheses is increasing in N, and y¢(1) is 

increasing in N.  When N > Nb, using L(1) = (a/x)1/(1-α)  from Lemma 6.1(c) gives y¢(1) = 

(qN/Yd)[xd + (1-a)(a/x)α/(1-α)].  As before, qN/Y is increasing in N and the value of q 

does not affect y¢(1).  The expression in brackets is decreasing in x whenever x < xb, 

which follows from N > Nb.  Therefore, the expression in brackets is increasing in N, and 

y¢(1) is increasing in N.  We note that y¢(1) is continuous with respect to N at Nb.  These 

results show that y1¢(1) < y2¢(1), and by continuity that y1¢(z) < y2¢(z) for all z in a non-

degenerate neighborhood of z = 1. 
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 By continuity, y1(z) - y2(z) has a maximum value at some z* Î [0, 1].  The results 

for y1¢(z) and y2¢(z) in the last two paragraphs together with y1(0) = y2(0) = 0 and y1(1) = 

y2(1) = 1 show that y1(z) - y2(z) is strictly positive on a neighborhood of z = 0 and also on 

a neighborhood of z = 1.  Thus, for any maximizer z* we have y1(z*) - y2(z*) > 0 where 

z* is interior.  Accordingly, there must be at least one local maximizer of y1(z) - y2(z) on 

z Î (0, 1) at which y1¢(z*) - y2¢(z*) = 0. 

 Suppose there is some interior point z0 Î (0, 1) at which y1(z0) - y2(z0) = 0 so the 

Lorenz curves intersect.  This implies that there are at least two distinct interior local 

maxima separated by an interior local minimum.  We will show that this is impossible. 

 First consider Na < N1 < N2 ≤ Nb.  From previous results y1(z) is linear on [0, z1a] 

and quadratic on (z1a, 1].  Likewise, y2(z) is linear on [0, z2a] and quadratic on (z2a, 1].  It 

can be shown that za is a decreasing function of N on the interval [Na, Nb], which implies 

0 < z2a < z1a.  Therefore, y1¢(z) - y2¢(z) is a positive constant on [0, z2a], and it decreases 

on (z2a, z1a] because y2 becomes quadratic while y1 remains linear.  For (z1a, 1], both y1 

and y2 are quadratic.  Previous results give y¢¢ = qN2/Ydα-2 whenever a Lorenz curve is 

quadratic.  We have shown that the ratio qN/Y does not depend on q and is increasing in 

N.  Thus, y¢¢ is increasing in N and y1¢¢(z) < y2¢¢(z) on (z1a, 1].  This implies y1¢(z) - y2¢(z) 

is decreasing on (z1a, 1].  Because y1¢(z) - y2¢(z) is initially a positive constant and 

decreases thereafter, there cannot be more than one z Î (0, 1) at which y1¢(z) - y2¢(z) = 0, 

so the Lorenz curves cannot intersect at an interior point.  This proves part (a) for the case 

Na < N1 < N2 ≤ Nb.    
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  Next, suppose Na < N1 ≤ Nb < N2.  As in the preceding paragraph, y1(z) is linear 

on [0, z1a] and quadratic on (z1a, 1].  Ignoring possible equalities among the boundaries 

z1a, z2a, and z2b, which do not affect the argument, there are three cases:  

(i)   0 < z1a < z2a < z2b < 1  

(ii)   0 < z2a < z1a < z2b < 1  

(iii)   0 < z2a < z2b < z1a < 1   

 For case (i), y1¢(z) - y2¢(z) is initially a positive constant; then increases because y1 

becomes quadratic while y2 remains linear; then decreases because both are quadratic 

(repeating a previous argument); and continues to decrease because y1 remains quadratic 

while the second derivative of y2 increases beyond quadratic.  Thus, there cannot be more 

than one z Î (0, 1) at which y1¢(z) - y2¢(z) = 0.   

 For case (ii), y1¢(z) - y2¢(z) is initially a positive constant; then decreases because 

y1 remains linear while y2 becomes quadratic; then decreases because both are quadratic; 

and continues to decrease because y1 remains quadratic while the second derivative of y2 

increases beyond quadratic.   Thus, there cannot be more than one z Î (0, 1) at which 

y1¢(z) - y2¢(z) = 0.   

 For case (iii), y1¢(z) - y2¢(z) is initially a positive constant; then decreases because 

y1 remains linear while y2 becomes quadratic; then decreases because y1 remains linear 

while the second derivative of y2 increases beyond quadratic; and then decreases because 

y1 is quadratic while y2 is beyond quadratic (note in the last case that y1¢(z) - y2¢(z) would 

be decreasing if both functions were quadratic, so this must also be true when the second 

derivative of y2 is even larger).  Thus, there cannot be more than one z Î (0, 1) at which 

y1¢(z) - y2¢(z) = 0.  We have therefore shown that the Lorenz curves cannot intersect at an 
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interior point in any of cases (i), (ii), or (iii) when Na < N1 ≤ Nb < N2.  This completes the 

proof of part (a) in Proposition 6.4. 

(b) To compute the Gini coefficient in (6.7), we need to compute ò01 y(z) dz.  From 

(6.6), this has two components, one involving the wage and the other involving land rent.  

The integral involving the wage is wN/2Y.  Using Propositions 6.1(b) and 6.2(b) with Nb 

= 2Qd and xb = adα-1 gives wN/2Y = 2a / (2+a+a2) when this integral is evaluated at Nb.  

Using Propositions 6.1(c) and 6.2(c), wN/2Y approaches a/2 as N ® ¥ and x ® 0. 

 To compute the rent component of ò01 y(z) dz in the insider-outsider range where 

Na < N ≤ Nb and xb ≤ x < xa, we calculate R(z) =  ò0s(z) r(s) ds for za ≤ z ≤ 1 as in (6.5). 

Because no sites are stratified, r(s) = 0 for 0 ≤ s ≤ sa and r(s) = q(sdα - xd) for sa ≤ s ≤ 1.  

We then compute ò01 R(z) dz where R(z) = 0 for 0 ≤ z ≤ za and R(z) =  ò0s(z) r(s) ds for za ≤ 

z ≤ 1.  Dividing by f(x) from Proposition 6.2(b) gives ò01 R(z) dz / Y.  By Nb = 2Qd and 

xb = adα-1, at Nb this ratio is ò01 R(z) dz / Y = (2-a)2[(1-a3)/3(1-a) - a] / 2(1-a)(2+a+a2).  

Adding this to the result in the preceding paragraph for wN/2Y to get ò01 y(z) dz at Nb   

and then using (6.7) to compute the Gini coefficient yields the result for G(Nb) stated in 

Proposition 6.4(b).  This is the upper bound for insider-outsider inequality because part 

(a) showed that the Gini is increasing in N on the interval (Na, Nb].  It is the lower bound 

for elite-commoner inequality because (a) showed that we have Lorenz curve dominance 

between Nb and any N2 > Nb.  

 To compute the rent component of ò01 y(z) dz in the elite-commoner range where 

Nb < N and x < xb, we calculate R(z) =  ò0s(z) r(s) ds for za ≤ z ≤ 1 as in (6.5).  Because 

some sites are now stratified, r(s) = 0 for 0 ≤ s ≤ sa; r(s) = q(sdα - xd) for sa ≤ s ≤ sb; and 

r(s) = q[s(as/x)α/(1-α)	 - x(as/x)1/(1-α)] for sb < s ≤ 1.  We then compute ò01 R(z) dz where 
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R(z) = 0 for 0 ≤ z ≤ za and R(z) =  ò0s(z) r(s) ds for za ≤ z ≤ 1.  Dividing by f(x) from 

Proposition 6.2(c) gives ò01 R[s(z)] dz / Y.  Letting N ® ¥ and x ® 0, it can be shown 

that this ratio approaches zero.  Combining this with the earlier result wN/2Y ® a/2 

implies ò01 y(z) dz ® a/2.  Using (6.7) to compute the Gini coefficient yields the limit 

result stated in Proposition 6.4(b).  



	 19	

Proof of Proposition 6.5 (demography). 

 Landless agents do not replace themselves because w < 1/r in Proposition 6.3(d).  

The inequality qa < q gives N > Na from Proposition 6.3 and x < xa from Proposition 6.1.  

The latter result gives sa < 1.  The inequality sa < sr follows from w < 1/r and x = w/q.   

 Suppose qa < q ≤ qb so that Na < N ≤ Nb, xb ≤ x < xa, and sa < 1 ≤ sb (no sites are 

stratified).  We want to show that sr < 1.  This is true if 1/r = Y(N)/N < qdα-1 where the 

equality follows from the definition of LRE in D6.2.   The inequality can be expressed in 

terms of x as f(x)/D(x) < qdα-1 where the ratio on the left is obtained from Propositions 

6.1(b) and 6.2(b).  This reduces to a quadratic expression in x that is positive.  It can be 

shown that the latter expression is decreasing on [xb, xa) and zero at xa.  This gives sr < 1.  

 Suppose instead that qb < q so that Nb < N, x < xb, and sa < sb < 1 (some sites are 

stratified).  We want to show that sr < sb.  This is true if 1/r = Y(N)/N < qx/a where the 

equality follows from the definition of LRE in D6.2.  The inequality can be expressed in 

terms of x as f(x)/D(x) < qx/a where the ratio on the left is obtained from Propositions 

6.1(c) and 6.2(c).  Some algebra shows that this is true when a < 1.  This gives sr < sb. 

 The result sr Î (sa, sb) implies L(sr) = d from Lemma 6.1.  From the definition of 

SRE in D6.1 and the definition of sr in Proposition 6.5, each insider at sr has the income 

w + r(sr)/d = 1/r.  Hence, these insiders exactly replace themselves.  The remainder of 

Proposition 6.5 follows from the fact that r(s) is continuous and increasing.   
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Proof of Lemma 7.1.  

(a) From (7.8) xA(s) + xB(s) = (sA + sB)/f(sA, sB), where f(sA, sB) º sA/[1 + s-1/(1-α)]α 

+ sB/[1 + s1/(1-α)]α from (7.5b).  Using s º sA/sB > 0 from (7.5a), some algebra 

shows that xA(s) + xB(s) > 1 iff the following expression is positive: 

   s[(2 + s-1/(1-α) + s1/(1-α))α - (1 + s1/(1-α))α]  

   + (2 + s-1/(1-α) + s1/(1-α))α - (1 + s-1/(1-α))α  

 This is true because each line is strictly positive. 

(b) From (7.8) we have xA(s) º sA/f(sA, sB).  From (7.4) and (7.5c) this can be 

rewritten as  

 xA(s) = sA / max {sALAα + sBLBα subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} or 

 xA(s) = 1 / max {LAα + (1/s)LBα subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} 

 The right-hand side is increasing in s due to the envelope theorem.  Thus xA¢(s) > 

0 for all s > 0.  A similar argument shows that xB¢(s) < 0 for all s > 0. 

(c) Write xA(s) = 1 / max {LAα + (1/s)LBα subject to LA ≥ 0, LB ≥ 0, LA + LB = 1} as 

in (b).  Because multiplication of the objective function by the constant (1/sA) has 

no effect on the solution, the optimal LA and LB in the denominator are given by 

(7.5d) for n = 1.  Making this substitution, it can be shown that the denominator of 

xA(s) approaches infinity as s ® 0 and approaches 1 as s ® ¥.  This gives xA(0) 

= 0 and xA(¥) = 1. 

(d) The proof parallels (c). 
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Proof of Proposition 7.1 (war and peace). 

 Attack is a dominant strategy for A iff pAh(nA) > sAnAα-1 or equivalently nA/N > 

xA(s).  Attack is a dominant strategy for B iff pBh(nB) > sBnBα-1 or equivalently nB/N > 

xB(s).  When neither inequality holds, there is peace as in (7.7).  If both A and B attack, 

then nA/N + nB/N > xA(s) + xB(s) > 1 where the second inequality is obtained from 

(7.9a).  This is impossible because nA + nB = N.  Thus A and B cannot both attack.  The 

results in (a), (b), and (c) follow from the first three sentences above. 

 To show that equality of marginal products implies peace, fix N > 0 and s > 0.  

Write LA* = N/[1 + s-1/(1-α)] and LB* = N/[1 + s1/(1-α)] as in (7.5d), where LA* + LB* = N.  

This is the unique labor allocation that equates marginal products across sites, and it is 

also the unique allocation that equates average products across sites.  Let the total food 

output from (LA*, LB*) be 

 Y* = sA(LA*) α + sB(LB*)α  

       = H(N) = max {sALAα + sBLBα subject to LA ≥ 0, LB ≥ 0, LA + LB = N}. 

Because the average products are equal, we have Y*/N = sA(LA*)α-1 = sB(LB*)α-1.  Peace 

is strictly better than war for group A when Y*/N = sA(LA*)α-1 > (LA*/N)h(LA*) = 

H(LA*)/N.  This holds because LA* < N gives H(LA*) < H(N) = Y*.  The proof is similar 

for B.  This shows that peace is strictly better for each group, so case (b) holds with strict 

inequalities.  
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Proof of Proposition 7.2 (interior locational equilibria). 

 For any given allocation n there are three possibilities: (a) B attacks; (b) there is 

peace; or (c) A attacks.  Using Proposition 7.1, we consider each case in turn. 

(a) B attacks iff nA/N < 1-xB or equivalently nA/nB < (1-xB)/xB.  The utility functions 

are those from the warfare case in (7.10).  The inequalities in (7.11) yield h1/α ≤ 

nA/nB ≤ (1/h)1/α.  Together this gives Proposition 7.2(a). 

(b) There is peace iff 1-xB ≤ nA/N ≤ xA or equivalently (1-xB)/xB ≤ nA/nB ≤ xA/(1-xA).  

The utility functions are those from the peace case in (7.10).  The inequalities in 

(7.11) yield (sh)1/(1-α) ≤ nA/nB ≤ (s/h)1/(1-α).  Together this gives Proposition 

7.2(b).  

(c) A attacks iff xA < nA/N or equivalently xA/(1-xA) < nA/nB.  The utility functions 

are those from the warfare case in (7.10).  The inequalities in (7.11) yield h1/α ≤ 

nA/nB ≤ (1/h)1/α.  Together this gives Proposition 7.2(c). 
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Proof of Proposition 7.3 (migration). 

(a) Follows from D7.1, the construction of LEB, LEP, and LEA in Proposition 7.2, and 

D7.2(a). 

(b) Suppose LEB is empty and consider two possibilities:  

 (i)  mA/mB < (1-xB)/xB, which yields war; and  

 (ii)  (1-xB)/xB ≤ mA/mB with mA/mB below LEP, which yields peace.   

 In case (i), the utility functions for war in (7.10) give uA(n) = [f(sA, sB)/N]nAα and 

uB(n) = [f(sA, sB)/N]nBα for all n with nA ≤ mA.  The fact that LEB is empty 

implies (1-xB)/xB ≤ h1/α so we have nA/nB < h1/α for all such n.  This gives uA(n) < 

huB(n) in (7.11) for all such n.  From D7.2(c) we obtain the final allocation n = (0, 

N). 

 In case (ii), the utility functions for peace in (7.10) give uA(n) = sAnAα-1 and uB(n) 

= sBnBα-1 for all n with nA ≥ mA and nA/nB below LEP.  From the construction of 

LEP, this implies huA(n) > uB(n) for all such n.  The allocation n with the smallest 

nA ≥ mA such that huA(n) = uB(n) is the one where nA/nB equals the lower bound 

of LEP. 

(c) Suppose LEB is non-empty and consider two possibilities: 

 (i) mA/mB is below the lower bound of LEB, which yields war;   

(ii) mA/mB is between the upper bound of LEB and the lower bound of LEP, 

which may yield either war or peace. 

 In case (i), the argument is the same is in (b)(i) above, except that now nA/nB < 

h1/α follows from the fact that all allocations under consideration have nA/nB 

below the lower bound of LEB.   



 6 

 In case (ii), suppose (1/h)1/α < mA/mB < (1-xB)/xB, which yields war.  The utility 

functions for war in (7.10) give uA(n) = [f(sA, sB)/N]nAα and uB(n) = [f(sA, 

sB)/N]nBα for all n with nA ≥ mA and nA/nB < (1-xB)/xB.  From (1/h)1/α < mA/mB ≤ 

nA/nB, at any such n we have uB(n) < huA(n).  This includes the allocation m.  

From D7.2(b), no such n can be a final allocation.  Now consider n with nA/nB ≥ 

(1-xB)/xB where nA/nB is below the lower bound of LEP.  Any such n yields peace.  

At nA/nB = (1-xB)/xB the function uB(n) is continuous while uA(n) has an upward 

jump.  This maintains uB(n) < huA(n).  From the construction of LEP, the 

allocation n with the smallest nA ≥ mA such that uB(n) = huA(n) is the one where 

nA/nB equals the lower bound of LEP.  If instead the initial allocation has mA/mB ≥ 

(1-xB)/xB and mA/mB is below the lower bound of LEP, we repeat the last part of 

the argument above.      

(d) The argument is symmetric to case (b) above. 

(e) The argument is symmetric to case (c) above. 
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Proof of Lemma 7.2. 

Fix st Î (0, ¥) and mAt/mBt Î (0, ¥).  We proceed in the following steps. 

(a) Recall the definitions of xA(s) and xB(s) in (7.8).  From Proposition 7.2, the pair 

(st, mAt/mBt) determines whether mAt/mBt is in one of the sets LEB, LEP, or LEA.  

If it is, then from D7.2(a) we have nAt/nBt = mAt/mBt.   

(b) If mAt/mBt is not in one of the sets LEB, LEP, or LEA, this and the fact that mt is 

interior implies that one of the four cases (b)-(e) in Proposition 7.3 applies.  From 

Proposition 7.2, st determines whether LEB is empty or non-empty and likewise 

for LEA.   The ratios (st, mAt/mBt) together determine which of (b)-(e) in 

Proposition 7.3 applies, as well as the final allocation nt, where nt must be at the 

boundary (Nt, 0), at the boundary (0, Nt), the allocation associated with the lower 

bound of LEP, or the allocation associated with the upper bound of LEP.  

(c) If step (a) applies with mAt/mBt Î LEP, or step (b) applies and nt is at the lower or 

upper bound of LEP, there is peace in period t.  This follows because all ratios in 

the LEP interval obey the conditions for peace in Proposition 7.1 by construction.  

We then obtain mAt+1/mBt+1 from (7.12), where the new allocation mt+1 is interior. 

(d) If step (a) applies with mAt/mBt Î LEB or mAt/mBt Î LEA, there is a non-trivial war 

in period t and we obtain mAt+1/mBt+1 from (7.13), where mt+1 is interior.  If step 

(b) applies and nt is (Nt, 0) or (0, Nt), there is a trivial war in period t, and again 

we obtain mAt+1/mBt+1 from (7.13), where mt+1 is interior.   
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Proof of Proposition 7.4 (war and peace with Malthusian dynamics). 

From Proposition 7.3, a non-trivial war occurs in period t+1 iff mAt/mBt Î LEB or mAt/mBt 

Î LEA.  In all other cases, either nt+1 = (Nt+1, 0) or nt+1 = (0, Nt+1) so there is a trivial war; 

or nAt+1/nBt+1 Î LEP so there is peace. 

(a) Proposition 7.2(a) shows that a necessary condition for mAt+1/mBt+1 Î LEB is h1/α 

≤ mAt+1/mBt+1 ≤ (1/h)1/α.  Proposition 7.2(c) shows that the same condition is 

necessary for mAt+1/mBt+1 Î LEA. 

(b) Proposition 7.2(a) shows that a necessary condition for mAt+1/mBt+1 Î LEB is 

mAt+1/mBt+1 < [1-xB(st+1)]/xB(st+1).  Proposition 7.2(c) shows that a necessary 

condition for mAt+1/mBt+1 Î LEA is mAt+1/mBt+1 > xA(st+1)/[1-xA(st+1)]. 

When the necessary condition in (a) is combined with the necessary condition for LEB in 

(b), by Proposition 7.2 this suffices for mAt+1/mBt+1 Î LEB.  The result for LEA is the 

same. 

 We want to show that one of the inequalities in (b) holds iff st+1 Ï [sAt+1, sBt+1] 

as in Proposition 7.4(b).  The solutions for sAt+1 and sBt+1 exist and are unique due to the 

continuity of xA and xB; the monotonicity of these functions from (7.9b); and the limit 

properties of these functions from (7.9c) and (7.9d).  We next show sAt+1 < sBt+1.  

Suppose sAt+1 = sBt+1.  From (7.9a) we have xA(sAt+1) + xB(sBt+1) > 1, which contradicts 

the definition of sAt+1 and sBt+1.  Suppose sAt+1 > sBt+1.  From (7.9b), xA is an increasing 

function, so this gives xA(sAt+1) + xB(sBt+1) > xA(sBt+1) + xB(sBt+1) > 1, which again 

contradicts the definition of sAt+1 and sBt+1.  Thus, sAt+1 < sBt+1.   
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 We now establish sAt+1 < st < sBt+1.  Using the monotonicity of xA and xB in 

(7.9b), this holds iff xA(sAt+1) < xA(st) and 1 - xB(st) < 1 - xB(sBt+1).  By the definitions of 

sAt+1 and sBt+1, these inequalities hold iff 1 - xB(st) < mAt+1/Nt+1 < xA(st).  We will show 

that the latter pair of inequalities is always satisfied. 

(i) Suppose there is a (trivial or non-trivial) war in period t.  This implies LAt/LBt = 

(st)1/(1-α) where (LAt, LBt) is obtained from (7.5d).  From (7.13), mAt+1/mBt+1 = 

(st)1/(1-α).  We know LAt/LBt equalizes average products at the productivity ratio st 

so the same is true for mAt+1/mBt+1.  Proposition 7.1 gives 1-xB(st) < mAt+1/Nt+1 < 

xA(st). 

(ii) Suppose there is peace in period t.   From Proposition 7.3, this implies nAt/nBt Î 

LEP. First consider the case in which nAt/nBt > (st)1/(1-α) so nAt/nBt exceeds the 

group size ratio that equalizes average products in period t.  By (7.12), mAt+1/mBt+1 

= st(nAt/nBt)α.  This gives nAt/nBt > mAt+1/mBt+1 > (st)1/(1-α).  Due to nAt/nBt Î LEP 

and the fact that (st)1/(1-α) is in the interior of LEP in period t, mAt+1/mBt+1 is in the 

interior of the set LEP defined by st in period t.  Proposition 7.2(b) then gives 1-

xB(st) < mAt+1/Nt+1 < xA(st).  A parallel argument yields the same result for the 

case in which nAt/nBt < (st)1/(1-α).  The only other case is nAt/nBt = (st)1/(1-α), which 

gives mAt+1/mBt+1 = (st)1/(1-α).  Again, mAt+1/mBt+1 is in the interior of the set LEP 

defined by st and Proposition 7.2(b) gives 1-xB(st) < mAt+1/Nt+1 < xA(st).       

This concludes the proof that sAt+1 < st < sBt+1.   

 When st+1 < sAt+1, the monotonicity of xA gives xA(st+1) < xA(sAt+1) º mAt+1/Nt+1 

or xA(st+1)/[1-xA(st+1)] < mAt+1/mBt+1.  When st+1 > sBt+1, the monotonicity of xB gives 1-
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xB(st+1) > 1- xB(sBt+1) º mAt+1/Nt+1 or [1-xB(st+1)]/xB(st+1) > mAt+1/mBt+1.  When sAt+1 ≤ 

st+1 ≤ sBt+1, we have [1-xB(st+1)]/xB(st+1) ≤ mAt+1/mBt+1 ≤ xA(st+1)/[1-xA(st+1)].  Thus, one 

of the inequalities in (b) of the proof holds iff st+1 Ï [sAt+1, sBt+1] as in Proposition 

7.4(b). 
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Proof of Corollary to Proposition 7.4. 

From Proposition 7.4, sAt+1 < st = st+1 < sBt+1 implies that there cannot be a non-trivial 

war in period t+1 regardless of whether there is war or peace in period t.  A trivial war 

can be ruled out using (i) and (ii) in the proof of Proposition 7.4 and substituting st = st+1 

to show that mAt+1/mBt+1 Î LEP for period t+1.  Proposition 7.3(a) then yields peace in 

period t+1.    
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Proof of Lemma 8.1. 

(a) From Table 8.1, F is a dominant strategy for elite i iff wei ≥ R - wmi or mi ≥ R/w - 

ei.  When this weak inequality holds, F is a best reply to F, a unique best reply to 

A (using pi < 1, which is true for all mi ≥ 0 given mj > 0), and a unique best reply 

to D (again using pi < 1).  When wei < R - wmi and j ≠ i uses F, elite i is strictly 

better off using A rather than F, so F is not a dominant strategy for elite i. 

(b) Suppose F is used by elite j ≠ i.  F is a best reply for elite i iff wei ≥ R - wmi as in 

part (a), which implies that F is dominant for i.  A is a best reply for i iff wei ≤ R - 

wmi.  D is never a best reply for i because ri - wmi < R - wmi always holds. 
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Proof of Lemma 8.2. 

(a) From Table 8.1, a necessary condition for A to be a dominant strategy for elite i is 

piR - wmi ≥ max {ri - wmi, wei} so A is a best reply to D.  We will show that the 

same condition is likewise sufficient for A to be dominant.  By construction this 

condition implies that A is a best reply to D.  Because piR - wmi ≥ wei it implies 

that A is a best reply to A.  Furthermore, A is a unique best reply to F because ri - 

wmi < R - wmi (so A is strictly preferred to D) and by assumption wei < R - wmi 

(so A is strictly preferred to F).  Hence, piR - wmi ≥ max {ri - wmi, wei} is both 

necessary and sufficient for A to be a dominant strategy for elite i. 

(b) Immediate from Table 8.1. 
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Proof of Proposition 8.1 (the combat stage). 

(a) Immediate from Lemma 8.1. 

(b) From Lemma 8.1, F is a dominant strategy for i but not for j ≠ i.  By A8.1 elite i 

uses F.  From Table 8.1, the unique best reply for j ≠ i is A because R - wmj > rj - 

wmj always holds and R - wmj > wej holds by assumption.  Hence, FA is the only 

Nash equilibrium.  

(c) Immediate from Lemma 8.2. 

(d) From Lemma 8.2, A is a dominant strategy for elite i but not for elite j ≠ i.  By 

A8.1 elite i uses A.   

(i) If wej < pjR - wmj then from Table 8.1, A and D are both best replies for j 

while F is not.  Hence, the only Nash equilibria are {AA, AD}. 

(ii) If wej = pjR - wmj then from Table 8.1, A, D, and F are all best replies for 

j.  Hence, the only Nash equilibria are {AA, AD, AF}. 

(iii) If wej > pjR - wmj then from Table 8.1, the unique best reply for j is F.  

Hence, the only Nash equilibrium is AF. 

(e) First, we show that wei < piR - wmi cannot hold for both i = A, B.  Suppose it did.  

By assumption, max {wei, ri - wmi} > piR - wmi for both i = A, B.  Together these 

imply rA > pAR and rB > pBR.  Summation gives R > R, which is a contradiction.  

Suppose instead wei < piR - wmi for elite i and wej ≥ pjR - wmj for j ≠ i.  The first 

of these inequalities gives wei < piR - wmi < ri - wmi.  In order to avoid the same 

contradiction as before we must then have rj - wmj < pjR - wmj < wej.  These two 

series of inequalities, along with ri - wmi < R - wmi, imply from Table 8.1 that AF 

is a Nash equilibrium.  Elite i never uses F, so in any other Nash equilibrium elite 
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i must either use A or D.  If i uses D then j's unique best reply is F.  However, i's 

unique best reply to F is A, so there cannot be a Nash equilibrium where i uses D.  

The only remaining possibility is that i uses A, but then j's unique best reply is F.  

This shows that AF is the only Nash equilibrium. 

(f) We are assuming max {wei, ri - wmi} > piR - wmi for both i = A, B and wei ≥ piR 

- wmi for both i = A, B.  The fact that wei ≥ piR - wmi implies from Table 8.1 that 

F is a best reply to A for elite i.  It is always true that A is a unique best reply to F 

for j ≠ i because R - wmj > rj - wmj and R - wmj > wej (where the latter follows 

from the assumption that F is not a dominant strategy for either elite).  Therefore, 

FA is a Nash equilibrium, and by a symmetric argument so is AF.  There is no 

other Nash equilibrium where i uses F, so in any other Nash equilibrium i must 

use A or D.  By symmetry, in any other Nash equilibrium j ≠ i must also use A or 

D.  Suppose there is some other Nash equilibrium of this kind.  Next observe that 

we cannot have wei = piR - wmi for both i = A, B.  This would imply ri - wmi > 

piR - wmi for both i = A, B and therefore ri > piR for both i = A, B.  Summation 

then gives R > R, which is a contradiction.  Thus, we must have wei > piR - wmi 

for at least one of i = A, B.  The elite i has F as a unique best reply to A.  But we 

already know that in any additional Nash equilibrium, each elite must use either A 

or D.  This eliminates the possibility that j uses A.  The only remaining possibility 

is that j uses D.  But A is not a best reply to D for i due to wei > piR - wmi, and 

because i uses either A or D, i must use D.  Hence, we need to know whether DD 

is a Nash equilibrium.  If it is, then from Table 8.1 we have ri - wmi ≥ piR - wmi 

for both i = A, B.  To avoid the same contradiction as before, we need ri - wmi = 
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piR - wmi for both i = A, B.  This implies wei > piR - wmi = ri - wmi for both i = 

A, B.  But then the unique best reply to D is F for both i = A, B, so DD is not a 

Nash equilibrium.  This establishes that there are no Nash equilibria other than 

{AF, FA}. 

With regard to DF and FD, use Table 8.1 and suppose elite j chooses F.  Because ri < R, 

elite i always has a strictly higher payoff by responding with A rather than D.  The roles 

of i and j ≠ i can be interchanged in this argument.  Hence, neither DF nor FD can be a 

Nash equilibrium.  The reasons for the exclusion of DD are discussed in the text. 
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Proof of Lemma 8.3. 

 Conditions (a)-(d) for AF and FA to both be Nash equilibria come from Table 8.1.  

The remarks about the relationship of these conditions to Figure 8.2 are straightforward.  

In a mixed strategy Nash equilibrium, lj is chosen to make elite i indifferent between A 

and F.  Using Table 8.1, the payoff from A for elite i is lj(piR - wmi) + (1-lj)(R - wmi).  

The payoff from F for elite i is wei for all values of lj Î [0, 1].  Equating these payoffs 

gives lj = (R/w - mi - ei)/(R/w)pj and similarly li = (R/w - mj - ej)/(R/w)pi where pi > 0 

and pj > 0 because we are assuming (mi, mj) > 0.  Elite i attacks with positive probability 

when li > 0, which is true iff condition (a) in Lemma 8.3 holds strictly.  Elite i flees with 

positive probability when 1-li > 0, which is true iff condition (c) holds strictly.  In this 

case elite i strictly prefers flight to warfare, and graphically (mi, mj) is above the ICiWF 

curve in Figure 8.2.  Parallel results are obtained for elite j by interchanging subscripts.  

The expected payoff for elite i is li[lj(piR - wmi) + (1-lj)(R - wmi)] + (1-li)wei.  But lj 

was constructed to equate the expression in brackets to wei and therefore elite i's payoff 

in equilibrium is also wei.  Similarly, elite j's equilibrium payoff is wej. 
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Proof of Lemma 8.4.     

 Consider a recruitment equilibrium (mi, mj) > 0 in the interior of the AA region.  

This must have the property that mi is a local maximizer of piR - wmi for the given mj and 

mj is a local maximizer of pjR - wmj for the given mi.  Using pi = mi/(mi + mj), the first 

order condition to maximize i's payoff is R/(mi + mj) - miR/(mi + mj)2 - w = 0.  The 

second derivative is negative so elite i's payoff is strictly concave in mi and the first order 

condition is sufficient for a maximum.  For elite j we have the first order condition R/(mi 

+ mj) - miR/(mi + mj)2 - w = 0, and again the payoff function is strictly concave.  Writing 

mi + mj = M, the first order conditions reduce to miR = wM2 and mjR = wM2.  Summing 

these gives MR = 2wM2 or M = R/2w.  This yields mi = mj = R/4w. 

 The point (mi, mj) = (R/4w, R/4w) is in the interior of the AA region iff piR - wmi 

> wei and pjR - wmj > wej so that each elite strictly prefers warfare to flight.  Substituting 

(R/4w, R/4w) into these inequalities gives R/4w > eA and R/4w > eB.  In the rest of the 

proof, we assume these inequalities hold.   

 To see that (R/4w, R/4w) is not a recruitment equilibrium, suppose elite i uses mi 

= R/4w.  If elite j also uses mj = R/4w then elite j's payoff is R/4.  Suppose instead that j 

deviates to the army size mj¢ that makes elite i indifferent between warfare and flight.  

This point is on ICiWF along the upper boundary of the AA region adjacent to the FA 

region.  The level of mj¢ in this deviation is obtained from miR/(mi + mj¢) - wmi = wei 

where mi = R/4w.  This yields mj¢ = (R/4w)(3R/4 - wei)/(R/4 + wei).  Substituting mj¢ into 

elite j's grabbing payoff R - wmj shows that R - wmj¢ exceeds R/4.  However, along the 

boundary between AA and FA, the outcome is AA due to A8.1.  But increasing the size 

of elite j's army by a small additional amount e > 0 moves the outcome from AA to FA 
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and achieves the grabbing payoff R - w(mj¢ + e).  This also exceeds R/4 when e > 0 is 

small enough, and therefore (R/4w, R/4w) is not a recruitment equilibrium.  A parallel 

argument shows that elite i has profitable deviations to the AF region, slightly to the right 

of the lower boundary for the AA region. 
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Proof of Lemma 8.5. 

 The equation describing ICiWF is piR - wmi = wei and the equation describing 

ICjWF is pjR - wmj = wej.  Rearranging these gives mj = fi(mi) = [mi/(mi + ei)](R/w - ei - 

mi) and mi = fj(mj) = [mj/(mj + ej)](R/w - ej - mj) respectively.  Suppose (mi, mj) is on 

both curves.  Writing mi + mj = M gives miR = Mw(mi + ei) and mjR = Mw(mJ + ej).  

Summation yields MR = Mw(M + ei + ej) or M = R/w - ei - ej.  More algebra gives mi = 

[ei/(ei + ej)](R/w - ei - ej) and mj = [ej/(ej + ei)](R/w - ei - ej) where both are positive 

because R/w > ei + ej from (8.3).  This is the unique positive intersection point in (8.11). 

(a) Next differentiate mj = fi(mi) to get fi¢(mi) = (R/w - ei - mi)[1/(mi + mj) - mi/(mi + 

ei)2] - mi/(mi + ei).  We are interested in the sign of this derivative at the intersection point 

from the preceding paragraph.  Substituting for mi shows that fi¢(mi) is strictly positive at 

the intersection point iff R/w < (ei + ej)2/ei.  Similarly, fj¢(mj) is strictly positive at the 

intersection point iff R/w < (ei + ej)2/ej.  Therefore, both derivatives are strictly positive at 

the intersection, and both ICiWF and ICjWF are rising, iff R/w < (ei + ej)2 / max (ei, ej).  The 

result in Lemma 8.5(a) about the lower bound for R/w from (8.3) involves easy algebra. 

(b) Let ej < ei.  From previous results, fj¢(mj) is strictly positive at the intersection 

point, and ICjWF is rising, iff R/w < (ei + ej)2/ej.  On the other hand, fi¢(mi) is strictly 

negative at the intersection point, and ICiWF is falling, iff R/w > (ei + ej)2/ei.  These two 

inequalities give the result in Lemma 8.5(b).  The roles of ei and ej can be interchanged in 

the preceding arguments. 

(c) Both fi¢(mi) and fj¢(mj) are strictly negative at the intersection point, and ICiWF 

and ICjWF are both falling, iff R/w > (ei + ej)2/ei and R/w > (ei + ej)2/ej both hold.  This 

gives the result in Lemma 8.5(c).      
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Proof of Proposition 8.2 (the recruitment stage). 
 
 The proof is organized into three parts corresponding to parts (a), (b), and (c) of 

Lemma 8.5.  We rely heavily on the graphs in Figures 8.3, 8.4, and 8.5.  We are limiting 

attention to points (mi, mj) > 0 such that mi < R/w - ei and mj < R/w - ej.  The latter two 

inequalities imply that grabbing is always strictly preferred to flight, where flight yields 

wei for elite i or wej for elite j.  We will use A8.1, A8.2, and A8.3, plus the conditions in 

Remark 8.1 ensuring that the point P is below R/w - ej and the point Q is to the left of 

R/w - ei.   

(a) Low stratification (Lemma 8.5(a), Figure 8.3). 

 First, we consider the case in Figure 8.3 where Q is above the dashed horizontal 

line through P, and P is to the right of the dashed vertical line through Q.  Other cases are 

addressed at the end of part (a) of the proof.  We examine points in the four regions of the 

graph: mixing, FA, AF, and AA. 

 Mixing.  Points in the interior of the shaded rectangle are both above the dashed 

horizontal line through P and to the right of the dashed vertical line through Q.  At such a 

point, elite i has the payoff wei.  At any other point on the same horizontal line, elite i has 

the same payoff through mixing or FA.  Elite j has the payoff wej.  At any other point on 

the same vertical line, elite j has the same payoff through mixing or AF.  Hence, neither 

elite has a profitable deviation, and the point is a Nash equilibrium. 

 At any point in this set, each elite attacks with positive probability because strict 

inequalities hold in (a) and (b) of Lemma 8.3.  Each elite flees with positive probability 

because strict inequalities hold in (c) and (d) of Lemma 8.3. 
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 All other points in the mixing region are (i) on or to the left of the dashed vertical 

line through Q, or (ii) on or below the dashed horizontal line through P, or both.  For any 

point of type (i), elite j can deviate up or down to reach a point in the FA region, resulting 

in the payoff R - wmj, which is strictly larger than the mixing payoff wej.  For any point 

of type (ii), elite i can deviate left or right to reach a point in the AF region, resulting in 

the payoff  R - wmi, which is strictly larger than the mixing payoff wei.  This shows that 

no other point in the mixing region is a Nash equilibrium. 

 FA.  Recall that the FA region does not include the lower boundary with the AA 

region; such boundary points are part of AA.  At any point in FA where elite j can deviate 

down and still remain in the FA region, we do not have a Nash equilibrium, because such 

a deviation enables elite j to grab at lower cost.  This rules out all points in FA except 

those on the boundary segment NQ (excluding N, which is in AA).  However, for the 

points along NT that are on or below the dashed horizontal line through P, elite i can go 

from a payoff of wei to the higher grabbing payoff R - wmi by deviating to the right to a 

point in AF.  This leaves points along the segment TQ (excluding T).  At any such point, 

elite j achieves the grabbing payoff R - wmi.  Elite j cannot gain by deviating up or down 

because this either leads to grabbing at a higher cost within FA, or the lower payoff wej 

through mixing or AF.  Also at any such point, elite i has the payoff wei.  Elite i cannot 

gain by deviating to the left or right because this gives the same payoff wei via mixing or 

FA.  Thus, points on the segment TQ (excluding T) are Nash equilibria. 

 AF.  Recall that the AF region does not include the left boundary with the AA 

region; such boundary points are part of AA.  A parallel argument to the one used in the 

preceding paragraph shows that no point in AF where elite i can deviate left and still be 
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in the AF region can be a Nash equilibrium.  This rules out all points except those on the 

boundary segment NP (excluding N, which is in AA).  However, for points along NS 

elite j can go from a payoff of wej to the higher grabbing payoff R - wmj by deviating up 

to a point in FA.  This leaves points on the segment SP (excluding S).  It can be shown by 

similar arguments to those in the preceding paragraph that these are Nash equilibria. 

 AA.  Recall that the AA region includes its boundary.  Along the upper boundary, 

elite j can exploit a discontinuity in the payoff function by raising mj slightly and jumping 

from the AA payoff pjR - wmj to the FA payoff R - wmj.  Such a deviation is profitable.  

Along the lower boundary, elite i can exploit a similar discontinuity by raising mi slightly 

and jumping from piR - wmi to the AF payoff R - wmi.  Such a deviation is profitable.  

This rules out all points on the boundary of AA.  Lemma 8.4 shows that there cannot be 

any Nash equilibria in the interior of the AA region.  Thus, the only Nash equilibria in 

Figure 8.3 are those already described. 

 As explained in the text, it is mathematically possible (contrary to Figure 8.3) to 

have Q on or below the dashed horizontal line through P, or to have P on or to the left of 

the dashed vertical line through Q.  It is not possible to have both cases simultaneously.  

In the former case, points on the segment TQ are excluded because elite i can deviate to a 

point in AF and get the grabbing payoff R - wmi rather than wei.  In the latter case, points 

on the segment SP are excluded because elite j can deviate to a point in FA and get the 

grabbing payoff R - wmj rather than wej.  The other arguments go through unchanged.  
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 (b) Intermediate stratification (Lemma 8.5(b), Figure 8.4). 

 First, we consider the case in Figure 8.4 where Q is above the dashed horizontal 

line through P.  Other cases will be addressed at the end of part (b) of the proof.  We 

examine points in the four regions of the graph: mixing, FA, AF, and AA. 

 Mixing.  Points in the interior of the shaded rectangle or on the heavy segment of 

its lower boundary are both (i) to the right of the dashed vertical line through Q and (ii) 

on or above the dashed horizontal line through P.  At such a point, elite j has the payoff 

wej.  At any other point on the same vertical line, elite j achieves the same payoff through 

mixing or AF.  Elite i has the payoff wei.  At any other point on the same horizontal line, 

elite i has the same payoff through mixing or FA (or in the case of point P, through AA). 

Hence, neither elite has a profitable deviation, and the point is a Nash equilibrium. 

 At any point in this set, each elite attacks with positive probability because strict 

inequalities hold in conditions (a) and (b) of Lemma 8.3.  Each elite flees with positive 

probability because strict inequalities hold in conditions (c) and (d) of Lemma 8.3. 

 All other points in the mixing region are either (i) on or to the left of the dashed 

vertical line through Q or (ii) below the dashed horizontal line through P (or both).  For 

any point of type (i), elite j can deviate up or down to reach a point in the FA region, 

resulting in the payoff R - wmj, which is strictly larger than the mixing payoff wej.  For 

any point of type (ii), elite i can deviate leftward to reach a point in the AF region or the 

interior of the AA region, either of which yields a higher payoff than the mixing payoff 

wei.  This shows that no other point in the mixing region is a Nash equilibrium. 

 FA.  Recall that the FA region does not include the lower boundary with the AA 

region; such boundary points are part of AA.  At any point in FA where elite j can deviate 



	 15	

down and still remain in the FA region, we do not have a Nash equilibrium, because such 

a deviation enables elite j to grab at lower cost.  This rules out all points in FA except 

those on the boundary segment NQ (excluding N, which is in AA).  For the points along 

NT that are below the dashed horizontal line through P, elite i can switch from a payoff 

of wei to the higher warfare payoff piR - wmi by deviating leftward to some point in the 

interior of AA.  This leaves the points along the segment TQ.  At any such point, elite j 

obtains a grabbing payoff R - wmi.  Elite j cannot gain by deviating up or down because 

this either results in grabbing at a higher cost within FA, or the lower payoff wej through 

mixing or AF.  Also at any such point, elite i has the payoff wei.  Elite i cannot gain by 

deviating left or right because this gives the same payoff wei through mixing or FA (or in 

the case of point P, through AA).  Thus, points on the segment TQ are Nash equilibria. 

 AF.  Recall that the AF region does not include the left boundary with the AA 

region; such boundary points are part of AA.  No point in AF can be a Nash equilibrium 

if elite i can deviate left and still be in the AF region, because this enables elite i to grab 

at a lower cost.  This rules out all points in the AF region.  

 AA.  Recall that the AA region includes its boundary.  Along the upper boundary 

(including point N), elite j can exploit a discontinuity in its payoff function by raising mj 

slightly and jumping from the AA payoff pjR - wmj to the FA payoff R - wmj.  Such a 

deviation is profitable.  Along the lower boundary, elite i can raise mi slightly and jump 

from the AA payoff piR - wmi to the AF payoff R - wmi.  Such a deviation is profitable.  

This rules out all the points on the boundary of AA.  Lemma 8.4 shows that there cannot 

be any Nash equilibria in the interior of the AA region.  Thus, the only Nash equilibria in 

Figure 8.4 are those already described. 
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 As explained in the text, it is mathematically possible (contrary to Figure 8.4) to 

have Q on or below the dashed horizontal line through P.  When Q is below this line, all 

points on the segment TQ are excluded because elite i can deviate left to a point in the 

interior of the AA region and get a higher payoff than wei.  When Q is on this line, Q is 

still an equilibrium because elite i obtains the payoff wei from all left or right deviations, 

including P where elite i gets this payoff from AA.  All other points on TQ are excluded 

for the same reason as before.  The other arguments in the proof go through unchanged.   

(c) High stratification (Lemma 8.5(c), Figure 8.5). 

 We examine points in the four regions of the graph: mixing, FA, AF, and AA. 

 Mixing.  Points in the shaded rectangle (including the heavy lower and leftward 

boundaries) are both (i) on or to the right of the dashed vertical line through Q and (ii) on 

or above the dashed horizontal line through P.  At such a point, elite j has the payoff wej.  

At any other point on the same vertical line, elite j gets the same payoff through mixing 

or AF (or in the case of point Q, through AA).  Elite i has the payoff wei.  At any other 

point on the same horizontal line, elite i has the same payoff through mixing or FA (or in 

the case of point P, through AA).  Hence, neither elite has a profitable deviation, and the 

point is a Nash equilibrium. 

 At any point in this set, each elite attacks with positive probability because strict 

inequalities hold in conditions (a) and (b) of Lemma 8.3.  Each elite flees with positive 

probability because strict inequalities hold in conditions (c) and (d) of Lemma 8.3. 

 All other points in the mixing region are either (i) to the left of the dashed vertical 

line through Q or (ii) below the dashed horizontal line through P (or both).  For any point 

of type (i), elite j can deviate down to a point in the interior of the AA region and get the 
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warfare payoff pjR - wmj, which is strictly larger than the mixing payoff wej.  For any 

point of type (ii), elite i can deviate leftward to a point in the interior of the AA region 

and get the warfare payoff piR - wmi, which is strictly larger than the mixing payoff wei.  

This shows that no other point in the mixing region is a Nash equilibrium. 

 FA.  Recall that the FA region does not include the lower boundary with the AA 

region; such boundary points are part of AA.  At any point in FA where elite j can deviate 

down and still remain in the FA region, we do not have a Nash equilibrium, because such 

a deviation enables elite j to grab at a lower cost.  This rules out all points in FA. 

 AF.  Recall that the AF region does not include the left boundary with the AA 

region; such boundary points are part of AA.  At any point in AF where elite i can deviate 

left and still remain in the AF region, we do not have a Nash equilibrium, because such a 

deviation enables elite i to grab at a lower cost.  This rules out all points in AF.  

 AA.  Recall that the AA region includes its boundary.  Along the upper boundary 

(except at point N), elite j can exploit a discontinuity in its payoff function by raising mj 

slightly and jumping from the AA payoff pjR - wmj to the FA payoff R - wmj.  Such a 

deviation is profitable.  Along the lower boundary (except at point N), elite i can likewise 

raise mi slightly and jump from the AA payoff piR - wmi to the AF payoff R - wmi.  Such 

a deviation is also profitable.  This rules out all points on the boundary of AA except for 

N, where the payoffs are (wei, wej) because each elite is indifferent between warfare and 

flight.  At this point, elite i can move left to the interior of AA and elite j can move down 

to the interior of AA.  Each deviation is profitable.  Lemma 8.4 shows that there cannot 

be any Nash equilibria in the interior of the AA region.  Thus, the only Nash equilibria in 

Figure 8.5 are those already described. 
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Proof of Proposition 10.1 (stratification). 

 From the solution for C following D10.1, C/Z < e holds in equilibrium iff N - e < 

eb(q)/q1/(1-α).  From (10.6), R(w)/e ≥ w holds in equilibrium iff eb(q)/(1-a)aα/(1-α) ≤ N - e.  

There is a value of N - e satisfying both conditions simultaneously iff q < aα(1-a)1-α º 

qmax as in (10.10).  When this is true, the earlier inequalities ensure that both stratification 

constraints hold iff (10.11) holds.  The lower bound eb(q)/(1-a)aα/(1-α) is increasing in q 

due to the fact that b(q) is increasing in q.  The upper bound eb(q)/q1/(1-α) is decreasing in 

q due to the definition of b(q). 
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Comment 10.1.  In the paragraph after (10.12), we claim the constraint y ≥ 0 is satisfied 

for all agents in equilibrium.  Consider a typical commoner with food consumption yC = 

xC - pm where xC is income and pm is expenditure on manufactured goods.  The income 

of a commoner in food units is the wage w.  In equilibrium all of the agents (both the elite 

and commoners) have m = M/N where M is total manufactured output.  We want to be 

assured that yC = w - pM/N ≥ 0, or wN ≥ pM.  But in a zero-profit equilibrium we will 

have wL = pM as in equation (10.15), where L is the aggregate input of manufacturing 

labor.  Because A + L + e = N from labor market clearing, we have L < N.   Hence, wL = 

pM implies wN > pM, which implies yC > 0.  Individual elite and commoner agents have 

an identical expenditure pm on manufactured goods, but the elite agents are at least as 

well off as the commoners in any equilibrium that satisfies the stratification constraints.  

Thus, xE ≥ xC and yE ≥ yC > 0.  
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Proof of Lemma 10.1. 

 From (10.12) and (10.14), f(0) = qr.  Also, f(L) = (N/L)[qM(L)/N]e-qM(L)/N and 

the fact that M(L) ® ¥ as L ® ¥ imply f(L) ® 0 as L ® ¥. 

 The function f(L) has a negative derivative at L > 0 iff the function ln f(L) has a 

negative derivative at L > 0.  The latter function is 

    ln f(L) = ln q - qM(L)/N + ln (erL - 1) - ln L 

so  d[ln f(L)]/dL = -(qr/N)erL + rerL/(erL - 1) - 1/L ≤ 0  for L > 0 

iff   = -(qrL/N)erL + rLerL/(erL - 1) - 1 ≤ 0  for L > 0. 

For compactness of notation, define K º rL so the last inequality becomes 

    -(qK/N)eK + KeK/(eK - 1) - 1 ≤ 0  for K > 0. 

Some reorganization gives 

   1 ≤ eK{(qK/N)eK - [K(q/N + 1) - 1]}  for K > 0 

where the equality holds at K = 0.  The derivative of the right side above is eKj(K) where 

j(K) º (q/N)(2K + 1)eK - K(q/N + 1) - q/N.  Note that j(0) = 0.  We have  

  j¢(K) = (q/N)(3 + 2K)eK - (q/N + 1) 

so j¢(0) = 2q/N - 1.  When A10.1 holds so that q/N ≥ 1/2, we have j¢(0) ≥ 0 and j¢(K) > 

0 for all K > 0.  This implies j(K) > 0 for all K > 0.  It follows that eKj(K) > 0 for all K > 

0 and therefore 1 < eK{(qK/N)eK - [K(q/N + 1) - 1]} for all K > 0.  In turn, this implies    

  d[ln f(L)]/dL = -(qr/N)erL + rerL/(erL - 1) - 1/L < 0 for all L > 0 

so f(L) has a negative derivative at all L > 0.  This completes the proof of the assertion in 

Lemma 10.1 that if A10.1 holds, f(L) is decreasing for all L > 0. 
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 Now suppose that A10.1 does not hold.  This implies j¢(0) < 0.  However, j¢(K) 

is continuous, increasing in K, and has j¢(K) ® ¥ as K ® ¥.  Thus, there is a unique Ka 

> 0 such that j(K) is falling on (0, Ka) and rising on (Ka, ¥).  From j(0) = 0 and j(K) ® 

¥ as K ® ¥, there is a unique Kb > Ka such that j(K) is negative on (0, Kb) and positive 

on (Kb, ¥).  This implies that eK{(qK/N)eK - [K(q/N + 1) - 1]} is decreasing on (0, Kb) 

and increasing on (Kb, ¥).  This expression is equal to unity at K = 0 and goes to infinity 

as K ® ¥.  From continuity it follows that there is a unique Kc > Kb such that 

 eK{(qK/N)eK - [K(q/N + 1) - 1]} < 1    for 0 < K < Kc  and 

 eK{(qK/N)eK - [K(q/N + 1) - 1]} > 1    for K > Kc. 

From the definition of K and earlier results, this implies that there is some Lc = Kc/r > 0 

such that  

 d[ln f(L)]/dL = -(qr/N)erL + rerL/(erL - 1) - 1/L > 0 for 0 < L < Lc  and 

 d[ln f(L)]/dL = -(qr/N)erL + rerL/(erL - 1) - 1/L < 0 for L > Lc. 

This completes the proof of the assertion in Lemma 10.1 that if A10.1 does not hold, 

there is some Lc > 0 such that f(L) is increasing for L < Lc and decreasing for L > Lc. 
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Proof of Proposition 10.2 (zero-profit equilibrium). 

(a) Consider any zero-profit equilibrium as in D10.3 with L0 = 0.  We have such an 

equilibrium iff p0 ≥ b¢(0) = q, w0 ≥ p0M¢(0) = p0r, and A0 = N - e = A(w0, q) = 

b(q)/(w0)1/(1-α).  From (10.9), the latter equalities uniquely determine the wage, 

with w0 = [b(q)/(N-e)]1-α.  The wage w0 is the same as defined in the agricultural 

equilibrium from D10.1.  The conditions p0 ≥ q and w0 ≥ p0r are both satisfied iff 

[b(q)/(N-e)]1-α/r ≥ p0 ≥ q.  There is such a p0 iff [b(q)/(N-e)]1-α ≥ qr.  By (10.18), 

the latter inequality holds iff q0 ≤ q.      

(b) Consider any zero-profit equilibrium as in D10.3 with L0 > 0.  We have such an 

equilibrium iff 

  (b1) p0 = b¢[M(L0)/N] 

  (b2) w0 = p0M(L0)/L0 

  (b3) A0 = A(w0, q) = b(q)/(w0)1/(1-α) 

  (b4) A0 + L0 + e = N 

 As in (10.16), (10.17), and Lemma 10.1, these imply b(q)1-α = (N - e - L0)1-αf(L0), 

so this equality is necessary for an equilibrium with L0 > 0.  Conversely if L0 > 0 

satisfies this equality, there are (p0, w0, A0) from (b1), (b2), (b3), and (b4) that 

constitute a zero-profit equilibrium as in D10.3.  From Lemma 10.1, f(0) = qr, 

f(¥) = 0, and f¢(L) < 0 for all L > 0 due to A10.1.  Also, (N - e - L)1-α = (N - e)1-α 

at L = 0, (N - e - L)1-α = 0 at L = N - e, and (N - e - L)1-α is decreasing for L Î (0, 

N - e).  By continuity and monotonicity there is a unique L0 > 0 such that b(q)1-α = 

(N - e - L0)1-αf(L0) iff b(q)1-α < (N - e)1-αf(0) or equivalently b(q)1-α < qr(N - e)1-α.  
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From (10.18) the latter inequality holds iff q < q0.  The uniqueness of (p0, w0, A0) 

follows from (b1), (b2), (b3), and (b4). 

(i) Differentiability of L0 as a function of q follows from the differentiability of f(L0) 

and the implicit function theorem.  Differentiability of (p0, w0, A0) as functions of 

q follows from the fact that these are differentiable functions of L0. 

(ii) A10.1, Lemma 10.1, and the resulting condition f¢(L0) < 0 for all L0 > 0 ensure 

that L0 is inversely related to b and therefore to q.  The equilibrium conditions 

(b1) and (b4) ensure that p0 and A0 are inversely related to L0 and therefore 

directly related to q.  A10.1, Lemma 10.1, (b1), and (b2) ensure that w0 is 

inversely related to L0 and therefore directly related to q. 

(iii) The equation b(q0)1-α = qr(N - e)1-α from (10.18) implies L0 ® 0 as q ® q0.  The 

other limits follow from the equilibrium conditions (b1), (b2), (b3), and (b4).  

These limits are identical to the solutions from part (a) at q0, so the equilibrium 

values are continuous at q0. 

(iv) Let q = 0 so b(0) º a1/(1-α) in (10.17).  We assume q0 > 0 in part (b) of Proposition 

10.2 and equilibrium requires b(0)1-α = a = (N - e - L0)1-αf(L0).  To show that L0 > 

0, suppose instead L0 = 0.  Using (10.18) this implies q0 = 0, a contradiction.  We 

have p0 > 0 from (b1), w0 > 0 from (b2), and A0 > 0 from (b3).  
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Comment 10.2.  In comment 10.1, we showed that commoners always have positive food 

consumption (yC > 0) in a zero-profit equilibrium.  This is harder to prove for an elite 

taxation equilibrium.  We want xC - pm = yC > 0 from the commoner budget constraint, 

where commoner income is the wage: w = xC.  Combining this with the fact that in any 

equilibrium we have m = M/N, we want w > pM/N so that the wage exceeds per capita 

expenditure on manufactured goods.  It is difficult to establish such a result in general.  

However, it will be shown later that there is a threshold qe such that the elite allows M > 

0 when 0 ≤ q < qe and imposes M = 0 when qe ≤ q.  It will also be shown that the optimal 

output ME(q) is continuous at qe.  Because the wage w and price p are continuous in q, 

and are finite and positive at qe, we have w > pM/N when q is below qe but sufficiently 

close to it.  This implies yC > 0 for productivity levels q where the manufacturing sector 

is positive but small.  This situation will prevail early in the urbanization process. 



 9 

Proof of Result for A10.2. 

 From (10.23) we have µ(L) = qrerL - qM/N[1 - (1 - e/N)qM/N].  Differentiation gives 

  ¶µ/¶L = qr2erL - qM/N{[1 - (q/N)erL][1 - (1 - e/N)qM/N] - (1 - e/N)(q/N)erL} 

The last term in braces is always negative.  The term 1 - (1 - e/N)qM/N is always positive 

for 0 ≤ L < Lmax from the definition of Lmax > 0.  A10.2 implies that 1 - (q/N)erL is non-

positive at L = 0 and negative for L > 0.  This establishes that ¶µ/¶L < 0 holds on the 

interval 0 ≤ L < Lmax when A10.2 is satisfied, and thus also on 0 ≤ L < min {Lmax, N - e}. 
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Proof of Lemma 10.2. 

 When evaluated at L = 0, the derivative µ(L) + l[L, b(q)] from (10.23) has the 

same sign as the expression  

  qr(N - e)1-α - [b1-α + (1-a)a1/(1-α)b-α]   where b º b(q).   

Recall that q ≥ 0 implies b ≥ a1/(1-α).  Also, note that b1-α + (1-a)a1/(1-α)b-α is increasing in 

b whenever b > a(2-α)/(1-α), which is true whenever q ≥ 0.  

 Define be implicitly by µ(0) + l(0, be) º 0 where be º b(qe).  This gives 

    qr(N - e)1-α º be1-α + (1-a)a1/(1-α)be-α 

(a) When part (a) of Lemma 10.2 applies, all b ≥ a1/(1-α) yield 

   qr(N - e)1-α < b1-α + (1-a)a1/(1-α)b-α 

 because b1-α + (1-a)a1/(1-α)b-α is equal to a(2-a) at b = a1/(1-α) and is increasing in 

b.  Thus, there is no be ≥ a1/(1-α) with µ(0) + l(0, be) º 0, and therefore no qe ≥ 0 

with µ(0) + l[0, b(qe)] = 0.  The fact that qr(N - e)1-α < b1-α + (1-a)a1/(1-α)b-α holds 

for all b ≥ a1/(1-α) implies that the derivative µ(L) + l[L, b(q)] in (10.23) is 

negative at L = 0 for all q ≥ 0.  Strict concavity of VE on the relevant interval 

implies LE(q) = 0 for all q ≥ 0. 

(b) When part (b) of Lemma 10.2 applies, there is a unique be ≥ a1/(1-α) with qr(N - 

e)1-α = be1-α + (1-a)a1/(1-α)be-α.  This occurs because b1-α + (1-a)a1/(1-α)b-α is equal 

to a(2-a) at b = a1/(1-α), is increasing in b, and goes to infinity as b® ¥.  Thus, 

there is a unique qe ≥ 0 with be º b(qe).  When the equality holds in Lemma 

10.2(b), we have be = a1/(1-α) and therefore qe = 0.  When the inequality holds, we 

have be > a1/(1-α) and therefore qe > 0.  The rest of part (b) follows from strict 
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concavity of VE on the relevant interval, earlier results about the sign of the 

derivative from (10.23) at L = 0, the fact that b1-α + (1-a)a1/(1-α)b-α is increasing in 

b, and the fact that b is increasing in q.         
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Proof of Lemma 10.3.  

 We use A10.2 here, which implies that A10.1 holds in Proposition 10.2.  Assume 

part (b) of Proposition 10.2 applies, and choose an arbitrary q Î [0, q0) so that L0(q) > 0.  

We write the labor input yielding zero profit as L0 > 0 for notational compactness.  We 

will show that whenever A10.2 and A10.3 hold, the derivative in (10.23) has µ(L0) + 

l(L0, b) < 0.  This rules out boundary solutions of the form LE = L0 in the elite 

optimization problem D10.4(a). 

 Recall from (10.20) that the wage is given by w(L, q) = [b(q)/(N - e - L)]1-α.  

When profit is zero so that pM = wL, we have b = (pM/L)1/(1-α)(N - e - L). Substituting 

this into l(L, b) from (10.23) gives 

l = -(N-e-L)α-2[(pM/L)(N - e - L)1-α(N - e - aL) + (1-a)a1/(1-α)(pM/L)-α/(1-α)(N - e - L)1-α] 

or  l = -(N - e - L)-1[(pM/L)(N - e - aL) + (1-a)a1/(1-α)(pM/L)-α/(1-α)] 

We want to show that  µ + l < 0 in (10.23), or equivalently  -l > µ.  The latter holds iff 

N - e - L + (1-a)L + (1-a)a1/(1-α)(pM/L)-1/(1-α) > (N - e - L)[M¢(L)L/M][1 - (1 - e/N)qM/N] 

Dividing by N - e - L and using (10.14), this is equivalent to 

 1 + (1-a)[L + a1/(1-α)(pM/L)-1/(1-α)]/(N - e - L) > (rLerL)[1 - (1 - e/N)qM/N]/(erL - 1) 

Therefore, a sufficient condition for µ + l < 0 in (10.23) is 

  1 ≥ (rLerL)[1 - (1 - e/N)qM/N]/(erL - 1) 

Abbreviating rL º K ≥ 0, using M = eK - 1, and reorganizing this condition gives the 

equivalent statement 

 s(K) º Ke2K(q/N)(1 - e/N) + eK[1 - K - K(q/N)(1 - e/N)] - 1 ≥ 0 

where s(0) = 0.  Differentiation yields 
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s¢(K) =  

eK{2KeK(q/N)(1 - e/N) + eK(q/N)(1 - e/N) - K[1 + (q/N)(1 - e/N)] - (q/N)(1 - e/N)} 

where s¢(0) = 0.  Now write s¢(K) º eKh(K) where h(K) is in braces above.  With some 

reorganization, this gives 

 h(K) = (q/N)(1 - e/N)(eK - 1) + (q/N)(1 - e/N)K(eK - 1) + K[eK(q/N)(1 - e/N) - 1]   

where h(0) = 0.  Now consider the derivative 

 h¢(K) = (q/N)(1 - e/N)[(2K + 3)eK - 1] - 1 

where h¢(0) = 2(q/N)(1 - e/N) - 1.  From A10.2 we have q/N ≥ 1 and from A10.3 we have 

e/N ≤ 1/2.  It follows that h¢(0) ≥ 0.  This implies h¢(K) > 0 for all K > 0 because h¢(K) is 

strictly increasing in K.  Using h(0) = 0 gives h(K) > 0 for all K > 0, and hence s¢(K) º 

eKh(K) > 0 for all K > 0.  Using s(0) = 0 then yields s(K) > 0 for all K > 0.  This implies 

that 1 > (rLerL)[1 - (1 - e/N)qM/N]/(erL - 1) holds for all L > 0.  We have shown that the 

latter is a sufficient condition for µ + l < 0 to hold at L0 > 0.  This concludes the proof.   



 14 

Proof of Lemma 10.4. 

 We first show qe < q0.  From (10.18) we have b01-α = qr(N - e)1-α where b0 º b(q0).  

From Lemma 10.2 we have µ(0) + l(0, be) º 0, where be º b(qe).  This gives qr(N - e)1-α 

= be1-α + (1-a)a1/(1-α)be-α.  Therefore, b01-α = be1-α + (1-a)a1/(1-α)be-α which implies b0 > be 

and therefore q0 > qe.  From Proposition 10.2(b) this implies that for all q Î [0, qe] we 

must have L0(q) > 0 so positive manufacturing labor is feasible in D10.4(a). 

 As explained in the text, any optimal labor input LE(q) must have 0 ≤ LE(q) < min 

{Lmax, N-e}.  Due to A10.2 the elite objective VE[p(L), XE(L, q)] is strictly concave for 

labor inputs in this interval.  This rules out multiple solutions and guarantees uniqueness 

of ME(q).  We have ME(qe) = 0 because by the construction of qe the derivative in (10.23) 

is zero at L = 0, and by strict concavity it is negative for all L > 0 in the relevant interval.  

We have 0 < ME(q) for 0 ≤ q < qe because from Lemma 10.2, all such q imply that the 

derivative in (10.23) is positive at L = 0.  We have ME(q) < M0(q) for 0 ≤ q < qe because 

A10.2, A10.3, and Lemma 10.3 rule out a boundary solution LE(q) = L0(q) in D10.4(a).  

ME(q) is decreasing on 0 ≤ q < qe due to the negative sign of the derivative in (10.25).   

 To demonstrate that ME(q) is continuous at qe, we show that the optimal solution 

L(q) is continuous at qe.  A few intermediate steps are required.  Let L(0) satisfy µ[L(0)] 

+ l[L(0), b(0)] º 0.  This labor input sets the derivative of VE in (10.23) equal to zero 

when q = 0.  We will show that a unique L(0) exists and has 0 < L(0) < min {Lmax, N-e}.  

First, note that we only consider L < N-e because no other levels of L can be feasible in 

D10.4(a). From qe > 0, the derivative in (10.23) is strictly positive at L = 0 and q = 0.  

This derivative is strictly negative for all L ≥ Lmax and q ≥ 0 due to µ(L) ≤ 0 and l[L, 
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b(q)] < 0.  If Lmax < N-e then continuity of the derivative in (10.23) and the fact that it is 

decreasing on [0, Lmax) due to A10.2 imply existence of a unique L(0) Î (0, Lmax).  If N-e 

≤ Lmax then the derivative in (10.23) with q = 0 approaches negative infinity as L ® N-e, 

and there is a unique L(0) Î (0, N-e).  In either case we have 0 < L(0) < min {Lmax, N-e}.  

From the monotonicity of L(q) on 0 ≤ q < qe, the largest optimal labor input on this 

interval is L(0) > 0. 

 Now return to the continuity issue.  Recall that L(qe) = 0.  We want to show that 

for any e with 0 < e < L(0), we can find some d > 0 such that q Î (qe - d, qe) implies L(q) 

< e.  This will establish the continuity of L(q) at qe.   

 From the definition of qe we have µ(0) + l[0, b(qe)] = 0.  This, along with e > 0 

and the strict concavity of the elite's objective on the relevant interval, give µ(e) + l[e, 

b(qe)] < 0.  From the definition of L(0), we have µ[L(0)] + l[L(0), b(0)] = 0.  Using e < 

L(0) and strict concavity on the relevant internal, this gives µ(e) + l[e, b(0)] > 0.  From 

continuity and monotonicity of l as a function of b, there is a unique bd Î (b(0), b(qe)) 

such that µ(e) + l(e, bd) = 0.  From continuity and monotonicity of b as a function of q, 

there is a unique qd Î (0, qe) such that b(qd) = bd.  Now set d = qe - qd > 0.  From strict 

concavity on the relevant interval, the first order condition is sufficient for a solution, and 

L = e satisfies the first order condition at the commons productivity qd  = qe - d.  Hence, 

L(qd) = e.  From the fact that L(q) is a decreasing function of q on the interval (0, qe), we 

have L(q) < e for all q Î (qe - d, qe).  This shows that L(q) is continuous at qe.  M(L) is 

continuous, so ME(q) º M[L(q)] is also continuous at qe. 
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Proof of Proposition 10.3 (elite taxation equilibrium). 

(a) Suppose qr(N - e)1-α ≤ a.  This implies q0 ≤ 0 from (10.18).  Proposition 10.2(a) 

applies, and hence for all q ≥ 0 there is a zero-profit equilibrium with L0 = 0.  By 

Proposition 10.2(b), there is no zero-profit equilibrium with L0 > 0 for any q ≥ 0.  

We have qr(N - e)1-α < a(2-a), so Lemma 10.2(a) applies and there is no qe ≥ 0.  

The only feasible labor input in D10.4(a) is zero, so for all q ≥ 0 the outcome is a 

zero-profit equilibrium with M = 0 and no taxation. 

(b) Suppose a < qr(N - e)1-α ≤ a(2-a).  This implies 0 < q0 from (10.18).  By 

Proposition 10.2, there is a unique zero-profit equilibrium with L0 = 0 when q0 ≤ q 

and a unique zero-profit equilibrium with L0 > 0 when 0 ≤ q < q0.  If qr(N - e)1-α < 

a(2-a) then Lemma 10.2(a) applies and there is no qe ≥ 0.  If qr(N - e)1-α = a(2-a) 

then Lemma 10.2(b) applies and qe = 0. 

(i) For 0 ≤ q < q0, L0 > 0 implies that zero-profit equilibrium would give M > 

0.  But if Lemma 10.2(a) applies, the derivative in (10.23) is negative at L 

= 0, and if Lemma 10.2(b) applies, the derivative in (10.23) is zero at L = 

0.  From A10.2, both cases imply that the derivative is negative for L > 0 

due to strict concavity on the relevant interval, as explained in the text.  

Thus, L = 0 is the unique solution for the elite optimization problem in 

D10.4(a).  The elite can achieve this outcome through sufficiently high 

taxes, yielding M = 0. 

(ii) For q0 ≤ q, L0 = 0 implies that zero profit equilibrium gives M = 0.  The 

only feasible labor input in D10.4(a) is zero.  Therefore, for all q0 ≤ q, the 
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outcome is a zero-profit equilibrium with M = 0.  The elite can achieve 

this outcome without taxation. 

(c) Suppose a(2-a) < qr(N - e)1-α.  This implies 0 < q0 from (10.18).  By Proposition 

10.2, there is a unique zero-profit equilibrium with L0 = 0 when q0 ≤ q and a 

unique zero-profit equilibrium with L0 > 0 when 0 ≤ q < q0.  Lemma 10.2(b) 

applies, giving 0 < qe.  Also, Lemma 10.4 gives 0 < qe < q0.  From A10.2, A10.3, 

and Lemma 10.3, there is never an elite optimum with LE = L0 in D10.4(a) so we 

restrict attention to boundary solutions with LE = 0 or interior solutions with 0 < 

LE < L0.         

(i) For 0 ≤ q < qe, we have L0 > 0.  Lemma 10.2(b) implies that the derivative 

in (10.23) is positive at L = 0, so the solution has LE > 0.  Lemma 10.4 

ensures that 0 < ME(q) < M0(q).  Thus, the elite imposes positive taxes but 

with M > 0. 

(ii) For qe ≤ q < q0, we have L0 > 0.  Hence, zero-profit equilibrium would 

give M > 0.  Lemma 10.2(b) implies that the derivative in (10.23) is zero 

at L = 0 when q = qe and negative when q > qe.  In either case, A10.2 

implies that the derivative is negative for L > 0 on the relevant interval by 

strict concavity.  Thus, LE = 0 is the unique solution for the problem in 

D10.4(a).  The elite can achieve this outcome through sufficiently high 

taxes, yielding M = 0.  

(iii) For q0 ≤ q, we have L0 = 0.  Hence, zero-profit equilibrium would give M 

= 0.  The only feasible labor input in D10.4(a) is zero.  Therefore, for all q0 
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≤ q, the outcome is a zero profit equilibrium with M = 0.  The elite can 

achieve this outcome without taxation. 
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Proof of Lemma 10.5. 

 Treating elite utility VE in (10.26) as a function of [L(q), q], we differentiate with 

respect to q and obtain  

 dVE[p(L(q)), XE(L(q), q)]/dq = {µ[L(q)] + l[L(q), b(q)]}L¢(q) - (F + L)¶w/¶q 

where µ and l are defined in (10.23).  By the envelope theorem, the bracketed coefficient 

of L¢(q) is zero at interior solutions for L (see Section 10.4).  Thus, the derivative reduces 

to - (F + L)¶w/¶q < 0, where the inequality follows from F > 0 and L > 0. 
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Proof of Lemma 10.6. 

 Treating commoner utility VC in (10.27) as a function of [L(q), q], we 

differentiate with respect to q and obtain  

 dVC[p(L(q)), XC(L(q), q)]/dq  

     = (N-e){[-(M/N)¶p/¶L + ¶w/¶L]L¢(q) + ¶w/¶q}  

These computations are straightforward. 
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Proof of Lemma 10.7. 

 Treat the social planner's utility VS in (10.28) as a function of [L(q), q].  Because 

VS = VE + VC, we have dVS/dq = dVE/dq + dVC/dq.  Summing the derivatives from 

Lemmas 10.5 and 10.6, and using N - e = C + F + L, we obtain 

  dVS[p(L(q)), XS(L(q), q)]/dq  

     = (N-e)[-(M/N)¶p/¶L + ¶w/¶L]L¢(q) + (¶w/¶q)C 
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Proof of Proposition 10.4 (local welfare effects). 

(a) Consider dVE[p(L(q)), XE(L(q), q)]/dq = - (F + L)¶w/¶q < 0 from Lemma 10.5.  

From (10.20), we have w(L, q) = [b(q)/(N - e - L)]1-α.  This gives  

  ¶w/¶q = (1-a)b(q)-αb¢(q)/(N - e - L)1-α 

From (10.5), F(w) = (a/w)1/(1-α).  Substituting for the wage from (10.20), this gives  

  F = a1/(1-α)(N - e - L)/b(q)  

Letting q ® qe from below and noting that L(q) ® 0, we have 

  - (F + L)¶w/¶q ® -(1-a)a1/(1-α)(N - e)αbe-α-1b¢(qe) < 0   

(b) Consider 

 dVC[p(L(q)), XC(L(q), q)]/dq  

     = (N-e){[-(M/N)¶p/¶L + ¶w/¶L]L¢(q) + ¶w/¶q} 

from Lemma 10.6.   As q ® qe from below, L(q) ® 0 and ME(q) ® 0, while ¶p/¶L and 

L¢(q) remain finite.  Hence, we can confine attention to (N-e)[(¶w/¶L)L¢(q) + ¶w/¶q].  

The derivatives of the wage are calculated from (10.20).  The resulting limits are:   

   For ¶w/¶L:  (1-a)be1-α(N - e)α-2  and  

   For ¶w/¶q:  (1-a)be-αb¢(qe)(N - e)α-1 

 Next, we compute L¢(q) and consider its limit as q ® qe from below.  Using 

(10.25), computing the required derivatives of µ and l, and taking limits gives 

   For L¢(q): (1-a)be-αb¢(qe)(N - e)α-1[1 - a(2-α)/(1-α)be-1]/D 

  where D º qr2[1 - (q/N)(2 - e/N)] - (1-a)(N-e)α-2 [2be1-α + (1-a)a1/(1-α)be-α] 

< 0 is the limit of the denominator in (10.25).  The negativity of D follows from q/N ≥ 1 

in A10.2 along with e/N < 1. 
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  Multiplying the limit of (¶w/¶L)L¢(q) + ¶w/¶q by N-e and reorganizing yields 

 dVC/dq ® (1/D)(1-a)(N-e)αbe-αb¢(qe)• 

  {qr2[1 - (q/N)(2 - e/N)] - (1-a)(N-e)α-2 [be1-α + a1/(1-α)be-α]} > 0 

(c) Because VS = VE + VC, we have dVS/dq = dVE/dq + dVC/dq.  The limit of dVS/dq 

as q ® qe from below is therefore equal to the limit of the sum dVE/dq + dVC/dq.  These 

two limits have already been calculated in parts (a) and (b).  Summing the results gives 

      (1/D)(1-a)(N-e)αbe-αb¢(qe)• 

  {-a1/(1-α)be-1D + qr2[1 - (q/N)(2 - e/N)] - (1-a)(N-e)α-2[be1-α + a1/(1-α)be-α]} 

The factor on the first line is negative due to D < 0.  Thus, the sign of the limit of dVS/dq 

as q ® qe from below is opposite to the sign of the factor on the second line.   

 Using the earlier result for D, the definition of be in Lemma 10.2, and some 

algebra shows that the factor on the second line has the same sign as 

(S)  r(N-e)[1 - (q/N)(2 - e/N)][be + (1-a)a1/(1-α)][be - a1/(1-α)]  

     + (1-a)[-be2 + a1/(1-α)be + (1-a)a2/(1-α)] 

Recall that when qe = 0 we have be = a1/(1-α), and when qe > 0 we have be > a1/(1-α).  The 

first line in (S) is zero when be = a1/(1-α) and negative when be > a1/(1-α).  The second line 

is positive for be = a1/(1-α), decreasing in be on the relevant range, and negative for large 

values of be.  If qe > 0 and the second line of (S) is non-positive, (S) is negative overall, 

and dVS/dq is positive in a neighborhood of qe.  In this case, total utility moves in the 

same direction as commons productivity.   

 The more interesting case arises when qe > 0 so be > a1/(1-α) but the second line of 

(S) is strictly positive.  Fix any such value of be.  From the definition of qe and thus be in 
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Lemma 10.2, we have qr(N-e)1-α = be1-α + (1-a)a1/(1-α)be-α.  In what follows, we maintain 

the fixed value of be and adjust other parameters so that this equation continues to hold.  

Set q = N so A10.2 holds with equality and e = N/2 so A10.3 holds with equality.  Then 

adjust r to maintain the fixed value of be when N changes.  These manipulations give   

  r(N-e)[1 - (q/N)(2 - e/N)] = -Nα-1(1/2)α+1[be1-α + (1-a)a1/(1-α)be-α]  

Substitute the right hand side of this equation into (S) to obtain 

(S¢)  -Nα-1(1/2)α+1[be1-α + (1-a)a1/(1-α)be-α][be + (1-a)a1/(1-α)][be - a1/(1-α)]  

    + (1-a)[-be2 + a1/(1-α)be + (1-a)a2/(1-α)] 

From the choice of be the second line is strictly positive.  If A10.2 and A10.3 hold with 

equality and we adjust r in response to N so that be is constant, we obtain the following: 

(i) For N ® 0, the first line of (S¢) approaches -¥ while the second line is constant, 

so (S¢) becomes negative.  In this case, dVS/dq is positive near qe and aggregate 

utility moves in the same direction as commons productivity. 

(ii) For N ® ¥, the first line of (S¢) approaches 0 while the second line is a positive 

constant, so (S¢) becomes positive.  In this case, dVS/dq is negative near qe and 

aggregate utility moves in the opposite direction to commons productivity. 

The assumption of equality in A10.2 and A10.3 is not essential.  If (S¢) is strictly positive 

or strictly negative, these restrictions can be relaxed without affecting the argument.  
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Proof of Lemma 10.8. 

 (a) If qr(N - e)1-α < a we have ag(0) > qr(N - e)1-α due to g(0) = 1.  There is no qs ≥ 0 

with ag(qs) º qr(N - e)1-α because g(q) is increasing.  Now consider the planner's 

objective in (10.29).  Because ag(q) > qr(N - e)1-α for all q ≥ 0, the derivative of 

the objective with respect to L is negative at L = 0 for all q ≥ 0.  By strict 

concavity, LS(q) = 0 is uniquely optimal. 

(b) If qr(N - e)1-α = a we have ag(0) = qr(N - e)1-α and qs = 0 by definition.  There is 

no qs > 0 with ag(qs) º qr(N - e)1-α because g(q) is increasing.  Now consider the 

planner's objective in (10.29).  Because ag(0) = qr(N - e)1-α, for q = 0 the 

derivative of the objective with respect to L is zero at L = 0, and for all q > 0 the 

derivative of the objective with respect to L is negative at L = 0.  By strict 

concavity, in each case LS(q) = 0 is uniquely optimal. 

(c) If qr(N - e)1-α > a we have ag(0) < qr(N - e)1-α.  There is a unique qs > 0 such that 

ag(qs) º qr(N - e)1-α because g(q) is continuous, increasing, and goes to infinity as 

q ® ¥.   

(i) Consider the planner's objective in (10.29).  For 0 ≤ q < qs we have ag(q) 

< qr(N - e)1-α.  This implies that the derivative of the objective with respect 

to L is positive at L = 0, which results in an interior solution LS(q) > 0.  

For qs ≤ q we have ag(q) ≥ qr(N - e)1-α.  This implies that the derivative of 

the objective with respect to L is zero or negative at L = 0, which results in 

a boundary solution LS(q) = 0.     
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(ii) Treating the first order condition for an interior solution as an identity and 

using the implicit function theorem gives dLS(q)/dq < 0 on 0 ≤ q < qs and 

thus also dMS(q)/dq < 0 on 0 ≤ q < qs.  To verify continuity at qs, consider  

 the interval 0 ≤ q < qs where LS(0) > 0 is the largest planner optimum on 

this interval.  Recall that LS(qs) = 0.  We want to show that for any e with 0 

< e < LS(0), we can find some d > 0 such that q Î (qs - d, qs) implies LS(q) 

< e.  This will establish the continuity of LS(q) at qs.  The derivative of the 

planner's objective is zero at L = e > 0 when the commons productivity q = 

qs - d satisfies 

      -ag(qs - d)(N - e - e)α-1 + qrer𝝴 - qM(𝝴)/N = 0    

 where qs - d < qs follows from the definition of qs, e > 0, the fact that the 

derivative of the planner's objective is decreasing in L for L ≥ 0 when 

A10.2 holds, and the fact that g(q) is increasing.  Strict concavity implies 

that the first order condition is sufficient, and thus LS(qs - d) = e.  Because 

LS(q) is decreasing on 0 < q < qs, we have LS(q) < e for all q Î (qs - d, qs).  

This shows that LS(q) is continuous at qs.  M(L) is continuous and so 

MS(q) is also continuous at qs.  

(iii) If M0(q) = 0, the result is trivial from (c)(i) above.  Therefore, consider an 

interior zero-profit equilibrium such that M0(q) > 0.  The derivative of the 

planner's objective with respect to L can be written  

     b¢(M/N)M¢ - ag(q)(N - e - L)α-1 

   From Section 10.3, an interior zero-profit equilibrium satisfies  
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     b¢(M/N)(M/L) - b(q)1-α(N - e - L)α-1 = 0 

 Now evaluate the planner's derivative at the values (L0, M0) from the latter 

equation.  Increasing returns gives M¢ > M/L.  Moreover, ag(q) ≤ b(q)1-α 

holds for all q ≥ 0.  Therefore, the planner's derivative must be positive at 

any interior zero-profit equilibrium, so L0(q) < LS(q) and M0(q) < MS(q). 

(iv) If Lemma 10.2(b) applies, then 0 ≤ qe.  Lemma 10.4, A10.2, and A10.3 

imply 0 ≤ qe < q0.  The definition of q0 gives b(q0)1-α  = qr(N - e)1-α and the 

definition of qs gives ag(qs) = qr(N - e)1-α, so ag(qs) = b(q0)1-α.  For any q 

> 0, ag(q) < b(q)1-α.  Due to q0 > 0, we have ag(q0) < b(q0)1-α.  Because 

ag(q0) < ag(qs) and g(q) is increasing, we have q0 < qs.   
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Proof of Proposition 10.5 (global welfare effects). 

  The proof of the main result is described in the text.  Here we show that one can 

find parameter values such that (i) the stratification constraints in Section 10.2 hold, (ii) 

the requirements 0 < qe < qs < qmax are satisfied, and (iii) A10.2 and A10.3 are satisfied. 

 Recall from Section 10.2 and Figure 10.1 that at N - e = e[Z + a/(1-a)], the 

stratification constraints are satisfied for all q Î [0, qmax) where qmax is defined in (10.10).  

Furthermore, if these constraints hold for an agricultural equilibrium at a given q, they 

will also hold for a manufacturing equilibrium at any lower q having the same commoner 

population N-e.  Thus, in the context of Proposition 10.5, we only need to show that these 

constraints are satisfied for the initial agricultural equilibrium where q Î (qs, qmax). 

 Lemma 10.2(b) states that 0 < qe iff a(2-a) < qr(N - e)1-α.  By Lemma 10.8(c)(iv) 

we automatically have qe < qs.  From the definition of qs in Lemma 10.8 and the fact that 

g(q) is increasing, we have qs < qmax iff ag(qmax) > qr(N - e)1-α.  Putting these together, we 

have 0 < qe < qs < qmax iff a(2-a) < qr(N - e)1-α < ag(qmax).   

 Set N - e = e[Z + a/(1-a)] to ensure the stratification constraints are satisfied, as 

explained above.  This takes care of requirement (i).  The preceding inequalities reduce to 

a(2-a) < qre1-α[Z + a/(1-a)]1-α < ag(qmax).  We can ensure a(2-a) < ag(qmax) by having Z 

sufficiently large.  Choose any such Z, and then choose qre1-α to give a(2-a) < qre1-α[Z + 

a/(1-a)]1-α < ag(qmax).  This takes care of requirement (ii).   

 Finally, let A10.2 and A10.3 hold with equality so q = N and e = N/2.  In this case 

we have qre1-α = rN(N/2)1-α, so it is possible to choose r and N to satisfy the inequalities 

at the end of the preceding paragraph.  This takes care of requirement (iii). 
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 The simplifications involving equalities for A10.2 and A10.3, along with the 

choice of the particular commoner population N - e = e[Z + a/(1-a)], are not essential.   

These can be relaxed to show that Proposition 10.5 applies over a larger region of the 

parameter space.  For brevity, we omit a more general analysis here.        
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Proof of Lemma 10.9.   

 Set L º 0, ignore D10.5(a), and note that D10.5(b) holds iff g(q)(N - e)α = N/r as 

in Figure 10.5.  Consider g(q)(N - e)α - N/r, which is defined for N ≥ e, strictly concave, 

and negative at N = e.  The ray N/r intersects the curve g(q)(N - e)α iff the maximum 

value of this difference is non-negative.  The first order condition for a maximum holds 

when N = e + [ag(q)r]1/(1-α).  Substituting this into the objective function, the maximum 

value of the difference is non-negative iff e ≤ (1-a)aα/(1-α)g(q)1/(1-α)r1/(1-α).   

 If this inequality is violated, N/r and V = g(q)(N - e)α do not intersect and there is 

no LRE.  If it holds with equality, there is a unique LRE involving a tangency between 

N/r and V = g(q)(N - e)α.  This LRE is not stable because V/N attains a maximum at the 

tangency point and declines when N deviates from the LRE value in either direction, so 

there is no neighborhood of the LRE on which V/N is decreasing as required in D10.5.  

An instability arises because with an initial drop in N, population continues to decrease. 

 When the inequality e < (1-a)aα/(1-α)g(q)1/(1-α)r1/(1-α) holds strictly, the maximum 

value of the difference g(q)(N - e)α - N/r is positive and there are two intersection points 

as in Figure 10.5.  Both of the associated population levels satisfy the LRE condition in 

D10.5(b).  Population falls when V < N/r and rises when V > N/r as indicated by the 

arrows in Figure 10.5.  The smaller N level is unstable because V/N is locally increasing.  

The larger N level is stable because V/N is locally decreasing. 

 This shows that for some arbitrary q ≥ 0 there is a unique stable LRE if and only 

if e < (1-a)aα/(1-α)g(q)1/(1-α)r1/(1-α).  Because g(q) is increasing, this inequality holds for all 

q ≥ 0 iff it holds for q = 0.  Using g(0) = 1, we obtain the result in Lemma 10.9. 
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 Finally, let f(q) = N - e be the commoner population at the unique stable LR.  We 

want to show that this is increasing in q, implying that it is increasing in g as claimed in 

Lemma 10.9.  By construction, [f(q) + e]/r = g(q)f(q)α for all q ≥ 0.  Differentiation gives  

  f¢(q) = g¢(q)f(q)α/{1/r - ag(q)f(q)α-1} 

Because g¢(q) > 0 and f(q) > 0, the numerator is positive.  The denominator is positive if 

f(q)1-α > ag(q)r.  The value of N that maximizes the difference g(q)(N - e)α - N/r satisfies 

(N - e)1-α = ag(q)r.  However, f(q) exceeds this value of N - e (see Figure 10.5).  Thus, 

f¢(q) > 0 holds for all q ≥ 0. 
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Proof of Lemma 10.10. 

(a) For the case (qr)0 < a(2-a)/(N0 - e)1-α, Lemma 10.2(a) implies LE(q) = 0 for all q ≥ 

0.  For the case (qr)0 = a(2-a)/(N0 - e)1-α, Lemma 10.2(b) implies qe = 0 and again 

LE(q) = 0 for all q ≥ 0.   

(b) For the case (qr)0 > a(2-a)/(N0 - e)1-α, Lemma 10.2(b) implies that there is a 

unique qe > 0 such that (i) LE(q) > 0 for 0 ≤ q < qe and (ii) LE(q) = 0 for qe ≤ q.  

We limit attention to cases where qe is small enough to satisfy 0 < qe < qmax.    
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Proof of Proposition 10.6 (long run transition to manufacturing). 

 Let Nmin º e/(1-a) and Nmax º q.  Let emax º (1-a)q be the value of e such that Nmin 

= Nmax, with Nmin < Nmax for e < emax.  We will only consider values of the parameter e for 

which the latter inequality holds.    

 At all stages in the proof, population will remain in the interval N Î (Nmin, Nmax].  

This implies that the elite objective function will be strictly concave in L at any relevant 

(N, q), so the elite labor allocation LE(N, q) is unique.  For more information on this, see 

the discussion of A10.2 in the text and the Result for A10.2 earlier in these proofs.  

(a) Choose arbitrary values of q and e such that e/(1-a) < q.  We will impose an upper 

bound on e in part (c) below and consider 'large' values of q in part (d) below.  Let 

N0 Î (e/(1-a), q] be the initial total population and let g0 Î (1, gmax) be the initial 

agricultural productivity.  As in (10.33), let N0 be stationary subject to L º 0 by 

use of rg0 = N0/(N0 - e)α.  For any r in the interval e1-α/gmaxqmax < r < q/(q - e)α 

there are choices of N0 Î (e/(1-a), q] and g0 Î (1, gmax) such that rg0 = N0/(N0 - 

e)α.  We will fix a value for r in part (c) and verify there that e1-α/gmaxqmax < r < 

q/(q - e)α holds.  For any such value of r we assume that N0 and g0 are chosen to 

satisfy the requirements of this paragraph. 

   Now fix these choices of N0 Î (e/(1-a), q] and g0 Î (1, gmax), and note that 

g0 > 1 implies q0 > 0.  Choose r0 > a(2-a)/q(N0 - e)1-α so that 0 < qe0 as in Lemma 

10.10(b), while making r0 small enough that 0 < qe0 < q0 or equivalently 1 < ge0 < 

g0.  This can be done for any N0 > e because a sufficiently low value of r0 yields 

qe0 = 0, a sufficiently high value yields qe0 > q0, and qe0 is continuous and 
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increasing in r0 over the relevant range.  The combination N0 and LE = 0 is an 

LRE associated with q0 as in D10.5 because N0 is stationary as in (10.33) and 

LE(N0, q0)  = 0 is optimal for the elite due to 0 < qe0 < q0 as in Lemma 10.10.  

Moreover, N0 is stable as in (10.34) because e/(1-a) < N0. 

(b) Given (N0, r0), let the commons productivity fall to q¢ = 0 or equivalently g¢ = 1.  

Because 0 < qe0 or equivalently 1 < ge0, the resulting SRE has LE(N0, q¢) > 0 as in 

Section 10.4.   

(c) After the climate shock, agricultural productivity is g¢ = 1.  Setting L º 0, let N¢ be 

the stationary population supported by rg¢ = N¢/(N¢ - e)α as in (10.33), or simply r 

= N¢/(N¢ - e)α because g¢ = 1.  For reasons to be explained in part (d) we need r < 

1.  Hence, we need (i) N¢/(N¢ - e)α < 1.  We also need (ii) e/(1-a) < N¢ in order to 

have stability for N¢.  There is a non-degenerate interval of N¢ values on which 

both (i) and (ii) are satisfied iff e < (1-a)aα/(1-α).  Impose this upper bound on e, 

choose any N¢ satisfying (i) and (ii), and set r = N¢/(N¢ - e)α.  It can be shown that 

these values of r and N¢, along with g¢ = 1 and e < (1-a)aα/(1-α), satisfy the 

inequality in Lemma 10.9.  Recall from part (a) that r must satisfy e1-α/gmaxqmax < 

r < q/(q - e)α.  In part (d) we will choose a value of q large enough that the upper 

bound exceeds unity, so this constraint can be ignored.  For the lower bound we 

have gmax > 1 so it suffices to show that e1-α/qmax < r.  This holds if e1-α(N¢ - e)α/N¢ 

< qmax.  For a fixed N¢ the left side is increasing in e and equals qmax when e/(1-a) 

= N¢.  Thus, the desired inequality holds whenever e/(1-a) < N¢ as in (ii) above.  
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Finally, we observe that because r is the same in both periods and 1 = g¢ < g0, we 

have N¢ < N0.  We imposed N0 ≤ q in part (a), so we have N¢ < q here. 

   For the given value of r and the commons productivity q¢ = 0, any LRE 

such that LE = 0 must have the population N¢.  To rule out an LRE with LE = 0, it 

suffices to choose r¢ so LE(N¢, 0) > 0.  Using Lemma 10.10, define the lower 

bound rmin¢ º a(2-a)/q(N¢ - e)1-α.  For r¢ ≤ rmin¢ we have LE = 0 at N¢, which gives 

an LRE associated with q¢ = 0.  For r¢ > rmin¢ we have LE > 0 at N¢ and therefore 

there is no LRE associated with q¢ = 0 that has LE = 0.  For the desired result in 

part (c) of Proposition 10.6, it is necessary and sufficient to have r¢ > rmin¢.  We 

observe that the lower bound rmin¢ depends on q and N¢.  We fixed N¢ earlier in 

this part of the proof but q remains to be chosen in part (d). 

(d) Let N¢ and r have the features described in part (c).  As discussed there, we will 

rule out an LRE with LE = 0 by assuming 

 (i)   r¢ > rmin¢ º a(2-a)/q(N¢ - e)1-α    

 This implies an inequality involving utility levels: 

    U[LE(N¢, 0), N¢, 0] > U(0, N¢, 0) 

 To see why, consider a social planner who chooses L to maximize U(L, N¢, 0).  

We have shown in the text (see Section 10.5) that when LE(N¢, 0) > 0, as is true 

when r¢ > rmin¢, the planner's choice LS(N¢, 0) is larger than LE(N¢, 0).  Moreover, 

U(L, N¢, 0) is strictly concave in L when N¢ < q, which was established in part (c), 

and the derivative of U with respect to L is zero at LS(N¢, 0).  Thus, U(L, N¢, 0) is 

increasing in L on 0 ≤ L ≤  LS(N¢, 0), so U[LE(N¢, 0), N¢, 0] > U(0, N¢, 0) and 



 36 

    U[LE(N¢, 0), N¢, 0]/N¢ > U(0, N¢, 0)/N¢ = 1/r  

 where the equality follows from the construction of N¢ and r in part (c).   

   Next, we choose a value for the parameter q.  In particular, we want to 

have a value for q such that   

 (ii)  U[LE(q, 0), q, 0]/q < 1/r 

 The significance of this condition will be discussed below but first we show that it 

is possible to choose q so that (ii) holds.  Using g¢ = 1 and (10.31), the left side of 

this inequality cannot exceed qα-1 + 1.  In the limit as q ® ¥ the latter approaches 

unity.  Thus whenever 1 < 1/r, (ii) must hold at sufficiently large values of q.  But 

r < 1 holds by construction from part (c).  Also recall from part (c) that we need r 

< q/(q - e)α.  This is true when q/(q - e)α > 1, which holds for all sufficiently large 

values of q.  Choose any value of q satisfying the requirements of this paragraph. 

   Now suppose (i) and (ii) both hold.  A previous result gives 

    U[LE(q, 0), q, 0]/q < 1/r < U[LE(N¢, 0), N¢, 0]/N¢    

  The continuity of LE(N, 0) in N and the continuity of U in L and N imply that 

there is some N* Î (N¢, q) such that  

    U[LE(N*, 0), N*, 0]/N* = 1/r 

 The pair (L*, N*) with L* = LE(N*, 0) is an LRE associated with q = 0 as in 

D10.5.  Any such LRE must have LE(N*, 0) > 0. 

   Notice that the choice of q was independent of r¢.  Having chosen N¢ as in 

part (c), and having chosen a value for q that satisfies (ii), we are free to choose r¢ 

to satisfy (i).  This rules out an LRE with LE = 0 and completes the proof. 
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